Dzisiaj jest 29 września 2020, 13:15

Czas środkowoeuropejski letni




Nowy temat Odpowiedz w temacie  [ Posty: 727 ]  Przejdź na stronę Poprzednia  1 ... 33, 34, 35, 36, 37  Następna
Autor Wiadomość
Post: 22 sierpnia 2020, 16:59 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Zagłębianie się w ciąg główny z misją Gaia

Diagramy Hertzsprunga–Russella (HR) są integralną częścią astronomii od ponad 100 lat. Gwiazdy na różnych etapach życia zajmują różne części diagramu, co pozwala nam na pierwszy rzut oka ocenić populację gwiazd. Misja Gaia dostarczyła nam ogromnej próbki gwiazd – czego możemy się nauczyć, umieszczając je na diagramie HR?

Diagramy HR są dość proste – to tylko wykresy jasność-barwa gwiazd. Okazuje się jednak, że gwiazdy zmieniają się drastycznie w miarę ewolucji, przechodząc z jednej części wykresu HR do drugiej, gdy przechodzą przez różne etapy życia. Oznacza to, że jeżeli chcesz poznać przybliżony wiek gwiazdy, możesz po prostu sprawdzić, gdzie znajduje się ona na diagramie HR.

Interesująca jest również możliwość zobaczenia, gdzie na diagramie HR skupiają się gwiazdy. Niektóre części tego wykresu nigdy nie zostaną wypełnione, ponieważ jest fizycznie niemożliwe, aby gwiazdy zajmowały te przestrzenie. Tak więc, wykreślając duże próbki na diagramie HR, możemy dowiedzieć się więcej o ewolucji gwiazd.

Misja Gaia obserwuje ogromną liczbę gwiazd – 1,7 mld! – z bardzo dużą precyzją, a wiele badań naukowych zostało już przeprowadzonych przy dwóch pierwszych publikacjach danych z sondy. W niedawnym artykule Wei-Chun Jao (Georgia State University) i Gregory Feiden (University of North Georgia) wykorzystali te dane do badania gwiazd skupionych w regionie na diagramie HR zwanym ciągiem głównym.

Gwiazdy ciągu głównego mają jedną wspólną cechę: ich paliwem jest wodór. Jednak mogą one należeć do różnych części ciągu głównego w zależności od cech, takich jak ich masa, ogólny skład chemiczny lub aktywność magnetyczna. Na przykład gwiazda ciągu głównego o dużej masie będzie bardziej niebieska i jaśniejsza niż gwiazda ciągu głównego o małej masie. Słońce plasuje się pośrodku ciągu głównego.

Dzięki ogromnej ilości danych misja Gaia dodała trzeci wymiar do diagramów HR: gęstość. Teraz stało się jaśniejsze bardziej niż kiedykolwiek wcześniej, których obszarów na wykresie HR unikają gwiazdy. W rzeczywistości, poprzednie badanie prowadzone przez Jao wykorzystywało dane Gaia, aby zidentyfikować lukę w niższej (bardziej czerwonej, słabszej) części ciągu głównego.

Jednym ze sposobów zrozumienia analizy Fouriera jest rozbicie sygnału na części składowe, umożliwiając identyfikację najbardziej widocznego składnika sygnału. Analiza Fouriera zastosowana do obrazu może ulepszyć rzeczywiste cechy i zmniejszyć szum.

Aby sprawdzić cechy charakterystyczne, takie jak przerwa w dolnej części ciągu głównego, Jao i Feiden symulowali diagramy HR oparte na danych z Gaia, ale zakładali, że gwiazdy są rozmieszczone w taki sposób, że żadne cechy charakterystyczne nie istnieją. Kiedy ten symulowany diagram HR został odjęty od rzeczywistego diagramu HR, różnice między dwoma obrazami ujawniły cechy charakterystyczne, takie jak przerwa w ciągu głównym. Następnie zastosowano analizę Fouriera, aby określić najsilniejsze składniki tego odejmowanego obrazu.

Jao i Feiden odkryli, że nad przerwą w ciągu głównym jest więcej gwiazd niż pod nią. Luka była również bardziej „pusta” na niebieskim końcu niż na czerwonym. Znaleźli również „paski” biegnące w poprzek ciągu głównego i niejednorodne cechy charakterystyczne w luce ciągu głównego.

Przerwa w ciągu głównym jest prawdopodobnie spowodowana nietypową fuzją helu, która powoduje zmianę promienia gwiazdy. Luka może być mniej pusta po czerwonej stronie, ponieważ jest wypełniona młodszymi gwiazdami i niewyraźnymi układami podwójnymi. Inne cechy charakterystyczne stanowią jednak interesującą zagadkę. Czy bardziej szczegółowe modele gwiazd mogą pomóc? Bądźcie czujni!

Opracowanie:
Agnieszka Nowak

Źródło:
AAS

Vega


Załączniki:
ESA_Gaia_DR2_AllSky_Brightness_Colour_black_bg_2k.jpg
ESA_Gaia_DR2_AllSky_Brightness_Colour_black_bg_2k.jpg [ 501.55 KiB | Przeglądany 780 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 23 sierpnia 2020, 16:29 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Wirująca czarna dziura napędza dżet strumieniem magnetycznym

Czarne dziury znajdują się w centrum prawie wszystkich badanych do tej pory galaktyk. Mają niewyobrażalnie dużą masę i dlatego przyciągają materię, gaz a nawet światło. Ale mogą też emitować materię w postaci dżetów plazmy – rodzaju wiązki plazmy wyrzucanej ze środka galaktyki z ogromną energią. Strumień plazmy może sięgać kilkuset tysięcy lat świetlnych daleko w kosmos.

Kiedy emitowane jest to intensywne promieniowanie, czarna dziura pozostaje ukryta, ponieważ promienie światła w jej pobliżu są silnie zakrzywione, co prowadzi do pojawienia się cienia. Zostało to niedawno ogłoszone przez naukowców z zespołu Event Horizon Telescope (EHT) zajmującego się masywną czarną dziurą w olbrzymiej galaktyce eliptycznej M87.

W kwazarze 3C 279 – także czarna dziura – zespół EHT odkrył inne zjawisko: w odległości ponad tysiąca razy większej od cienia czarnej dziury nagle zapaliło się jądro strumienia plazmy. Nie było jeszcze jasne, w jaki sposób energia z czarnej dziury przedostaje się do jądra dżetu w niewidoczny sposób.

Ten kwazar był obserwowany za pomocą kosmicznego teleskopu Fermi-LAB przez astrofizyka Amita Shuklę, który do 2018 roku prowadził badania na Julius-Maximilians-Universität (JMU) Würzburg w Bawarii w Niemczech. Shukla wykazał, że jądro dżetu, które zostało odkryte w zakresie długości fal milimetrowych, również emituje wysokoenergetyczne promieniowanie gamma, ale z wyjątkowo migoczącą jasnością. Jak donosi czasopismo Nature Communications, jasność ta może się podwoić w ciągu kilku minut.

Specjalny wzór sekwencji zmian jasności jest charakterystyczny dla uniwersalnego procesu zwanego ponownym połączeniem magnetycznym, który zachodzi w wielu obiektach astronomicznych o silnym polu magnetycznym. Aktywność słoneczna również ma związek z dynamiką pól magnetycznych i ponownym połączeniem. Zostało to niedawno zademonstrowane przez obserwację „ognisk” w atmosferze słonecznej w ramach misji Solar Orbiter.

Ale wracając do kwazara 3C 279: „Widziałem, jak analiza danych ujawniła specjalny wzór ponownego połączenia magnetycznego w krzywej blasku. Czułem się, jakbym nagle odszyfrował hieroglif w alfabecie czarnej dziury” – mówi podekscytowany Amit Shukla.

Podczas ponownego połączenia energia, która początkowo jest niewidocznie zmagazynowana w polu magnetycznym, zostaje nagle uwolniona w postaci licznych „mini-dżetów”. W dżetach tych cząsteczki są przyspieszane, co powoduje wytwarzanie obserwowanego promieniowania gamma. Ponowne połączenie magnetyczne wyjaśniło by, w jaki sposób energia dociera do jądra dżetu z czarnej dziury i skąd ostatecznie pochodzi.

Profesor Karl Mannheim, kierownik Katedry Astronomii UJM i współautor publikacji, wyjaśnia: „czasoprzestrzeń w pobliżu czarnej dziury w kwazarze 3C 279 jest zmuszona do wirowania razem z nim. Pola magnetyczne zakotwiczone w plazmie wokół czarnej dziury usuwają dżet spowalniając rotację czarnej dziury i zmieniają w promieniowanie część jej energii rotacyjnej.”

Opracowanie:
Agnieszka Nowak

Źródło:
University of Würzburg

Vega


Załączniki:
csm_0821mannheim-w_f08e06769b.jpg
csm_0821mannheim-w_f08e06769b.jpg [ 48.51 KiB | Przeglądany 775 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 25 sierpnia 2020, 18:47 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Paradoks poprzeczki Drogi Mlecznej rozwiązany

Na tajemniczą i długotrwałą zagadkę w sercu naszej galaktyki padło nowe światło. Nowa praca proponuje rozwiązanie tzw. „paradoksu galaktycznej poprzeczki”, w którym różne obserwacje dają sprzeczne szacunki dotyczące ruchu centralnych regionów Drogi Mlecznej. Wyniki zostały opublikowane w Monthly Notices of the Royal Astronomical Society.

Większość galaktyk spiralnych, takich jak nasza Droga Mleczna, posiada w swoim centrum dużą strukturę gwiazd przypominającą poprzeczkę. Znajomość prawdziwego rozmiaru i prędkości obrotowej poprzeczki ma kluczowe znaczenie dla zrozumienia, w jaki sposób formują się i ewoluują galaktyki, a także jak tworzą podobne poprzeczki w całym Wszechświecie.

Jednak rozmiar poprzeczki naszej galaktyki i prędkość jej wirowania były silnie kwestionowane w ciągu ostatnich 5 lat; podczas gdy badania ruchów gwiazd w pobliżu Słońca pokazują poprzeczkę, która jest zarówno szybka, jak i mała a bezpośrednie obserwacje regionu centralnego Galaktyki pokazują poprzeczkę, która jest znacznie wolniejsza i większa.

Nowe badanie przeprowadzone przez międzynarodowy zespół naukowców pod kierownictwem Tariqa Hilmi z University of Surrey i Ivana Mincheva z Leibniz Institute for Astrophysics Potsdam (AIP) sugeruje wnikliwe rozwiązanie tej rozbieżności. Analizując najnowocześniejsze symulacje formowania się galaktyki Drogi Mlecznej, naukowcy pokazują, że zarówno rozmiar poprzeczki, jak i jej prędkość obrotowa zmieniają się szybko w czasie, powodując, że poprzeczka wydaje się nawet dwa razy dłuższa i rotuje o 20% szybciej w określonych momentach.

Pulsacje poprzeczki wynikają z jej regularnych spotkań z galaktycznym ramieniem spiralnym, w czymś, co można określić jako „kosmiczny taniec”. Gdy poprzeczka i ramię spiralne zbliżają się do siebie, ich wzajemne przyciąganie pod wpływem grawitacji powoduje, że poprzeczka zwalnia a ramie przyspiesza. Po połączeniu obie struktury poruszają się jako jedna, a poprzeczka wydaje się znacznie dłuższa i wolniejsza niż w rzeczywistości. Gdy tancerze się rozdzielają, poprzeczka przyspiesza a ramię spiralne zwalnia.

Ostatnie obserwacje potwierdziły, że wewnętrzne ramię spiralne Drogi Mlecznej jest obecnie połączone z poprzeczką, co zgodnie z symulacjami zdarza się mniej więcej raz na 80 mln lat. Dane z nadchodzącej trzeciej publikacji danych misji Gaia pozwolą na dalsze testowanie tego modelu, a przyszłe misje odkryją, czy taniec ten będzie trwał w innych galaktykach we Wszechświecie.

Opracowanie:
Agnieszka Nowak

Źródło:
Royal Astronomical Society

Vega


Załączniki:
galaxy-simulation-snapshots.png
galaxy-simulation-snapshots.png [ 953.38 KiB | Przeglądany 560 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 26 sierpnia 2020, 19:06 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Niedawno odkryte planety przy GJ 887 nie są bezpieczne przed jej rozbłyskami

Pobliska gwiazda, którą okrążają dwie bądź trzy egzoplanety, była uważana za cichą i nudną. Takie właściwości są poszukiwane, ponieważ tworzą bezpieczne środowisko dla swoich planet, zwłaszcza tych, które mogą znajdować się w tym, co naukowcy nazywają „strefą zdatną do zamieszkania”, gdzie na ich powierzchni może istnieć woda w stanie ciekłym i możliwe jest życie. Ale astronomowie z Arizona State University ogłosili, że ta pobliska gwiazda okazuje się nie być wcale taka przyjazna.

Gwiazda ta, nazwana GJ 887, jest jedną z najjaśniejszych gwiazd typu M na niebie. Gwiazdy typu M to czerwone gwiazdy – karły – o małej masie, które przewyższają swoją liczebnością gwiazdy takie jak nasze Słońce, ponad dziesięciokrotnie, i ogromna większość egzoplanet w naszej galaktyce krąży właśnie wokół nich.

GJ 887 została początkowo wyróżniona ze względu na pozornie łagodne środowisko kosmiczne, które zapewnia odkrytym niedawno planetom. Podczas monitorowania przez satelitę TESS, misję poszukiwania planet poza naszym Układem Słonecznym, gwiazda dziwnie nie wykazywała wykrywalnych rozbłysków przez 27 dni ciągłych obserwacji.

Brak rozbłysków to cecha, która sprzyja przetrwaniu atmosfery na planetach krążących wokół gwiazdy, a tym samym potencjalnemu życiu na tych planetach.

Ale astronomowie z ASU, Parke Loyd i Evgenya Shkolnik, mieli wątpliwości, czy GJ 887 jest tak spokojna. Przeglądając archiwalne dane z teleskopu Hubble’a, odkryli, że GJ 887 rozbłyskuje co godzinę.

Jak zauważyli tę różnicę? Używając dalekiego ultrafioletu, Loyd, Shkolnik i ich współpracownicy byli w stanie zobaczyć ogromne skoki jasności spowodowane przez rozbłyski gwiazdy.

Ich odkrycie zostało niedawno opublikowane w Research Note of the American Astronomical Society, przy współpracy z University of Colorado, Boulder i Naval Research Laboratory w Waszyngtonie.

Gwiazdy typu M: gospodarze większości potencjalnie nadających się do zamieszkania planet

Ponieważ jest ich tak wiele, gwiazdy typu M, takie jak GJ 887, odgrywają kluczową rolę w dążeniu ludzkości do zrozumienia, gdzie mieści się Ziemia w wielkiej menażerii planet we Wszechświecie oraz w poszukiwaniu życia na innych planetach.

Gwiazdy typu M są podatne na bombardowanie swoich planet rozbłyskami. Mogą sprawiać wrażenie spokojnych w świetle widzialnym, tak jak to obserwuje misja TESS, a w rzeczywistości mogą być pełne rozbłysków, które są wyraźnie widoczne w świetle ultrafioletowym zawierającym fotony o znacznie większej energii niż światło widzialne. A każdy rozbłysk może zbombardować planety burzą magnetyczną i deszczem szybko poruszających się cząsteczek, zwiększając szanse, że atmosfery planet GJ 887 uległy erozji dawno temu.

„Fascynujące jest wiedzieć, że obserwowanie gwiazd w normalnym świetle optycznym (tak jak robi to misja TESS) nie jest bliskie opowiedzenia całej historii. Szkodliwe środowisko promieniowania tych planet można w pełni zrozumieć jedynie przy pomocy obserwacji w UV, takich jak te z Kosmicznego Teleskopu Hubble’a” – powiedział Shkolnik.

Chociaż monitorowanie gwiazd typu M w ultrafiolecie jest cenne, zasoby, które astronomowie muszą przeznaczyć na takie obserwacje, są obecnie ograniczone. Na szczęście w przygotowaniu są planowane misje, które mogą pomóc w zaspokojeniu tej potrzeby, w tym misja CubeSat prowadzona przez ASU, w której Shkolnik jest głównym badaczem. Misja ta zapewni astronomom czas potrzebny na obserwację, jakiego potrzebują, aby uchwycić rozbłyski UV od gwiazd typu M i zmierzyć, jak często się one zdarzają, ostatecznie prowadząc do lepszego zrozumienia gwiazd i planet w naszej galaktyce.

„Emisja promieniowania UV gwiazdy jest naprawdę krytycznym, choć wciąż brakującym elementem układanki dla naszego zrozumienia atmosfer planet i ich zdatności do zamieszkania” – dodaje Shkolnik.

Opracowanie:
Agnieszka Nowak

Źródło:
ASU

Vega


Załączniki:
nasa_image_hero.jpg
nasa_image_hero.jpg [ 103.54 KiB | Przeglądany 551 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 27 sierpnia 2020, 19:38 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Badanie procesu formowania się czarnej dziury

Niektórzy uważają, że galaktyki karłowate są kapsułami czasu, ale uważa się, że zamiast starych zapisów zachowują one nasiona czarnych dziur powstałych we wczesnym Wszechświecie. Dzieje się tak, ponieważ większość galaktyk karłowatych wykrytych w pobliskim Wszechświecie nie wykazuje oznak interakcji ze swoimi galaktycznymi sąsiadami, pozostawiając te stosunkowo małomasywne zbiorowiska gazu, pyłu i gwiazd ewoluujące w izolacji. Bez zanieczyszczenia z innych galaktyk astronomowie mogą traktować te galaktyki karłowate jako nieskazitelne zbiorniki z przeszłości Wszechświata. A zatem, analizując rozmieszczenie i masy czarnych dziur w galaktykach karłowatych, astronomowie mogą mieć nadzieję, że rzucą trochę światła na to, jak one powstały.

W dyskusji dominują dwa mechanizmy powstania: albo czarne dziury powstały w wyniku zapadnięcia się wczesnych generacji gwiazd, znanych jako gwiazdy populacji III, albo powstały w wyniku bezpośredniego zapadnięcia się gazu i pyłu. Gdyby dominował pierwszy mechanizm, spodziewalibyśmy się znaleźć dużą liczbę czarnych dziur o małej masie, podczas gdy przewiduje się, że drugi mechanizm wytworzy znacznie mniejszą liczbę nasion o większej masie. Niestety galaktyki karłowate są znacznie słabsze niż ich odpowiedniki o większej masie, więc trudno je wykryć. Jeszcze większym wyzwaniem są często niewidoczne czarne dziury w ich wnętrzach.

Łatwiejszym sposobem wykrywania tych czarnych dziur jest oczekiwanie, że akreują materię i emitują ogromne ilości promieniowania, zamieniając je w źródło znane jako aktywne jądro galaktyczne (AGN). W ciągu ostatniej dekady nastąpił ogromny wzrost liczby AGN wykrytych w galaktykach karłowatych. Autorzy pracy starają się umieścić niektóre z tych AGN na dobrze znanej relacji dyspersji masy i prędkości, aby spróbować uzyskać wgląd w to, jak czarne dziury mogły powstać we wczesnym Wszechświecie.

Poprzednia praca, na której opierają się autorzy, pobiera galaktyki z atlasu Sloan NASA i identyfikuje wszelkie znajdujące się w nim AGNy za pomocą diagnostyki BPT (nazwanej na cześć jej twórców: Baldwina, Phillipsa i Terlevicha). Technika ta polega na porównaniu stosunku dwóch par linii emisji optycznej w celu określenia, czy widmo galaktyki macierzystej jest zdominowane przez procesy AGN, procesy formowania się gwiazd, czy też jest połączeniem obu. Ponadto obiekty musiały mieć szerokopasmową detekcję Hα, ponieważ są one wykorzystywane do obliczania masy czarnej dziury. Aspekty emisji Hα opisują zachowanie szerokopasmowego regionu (broad line region – BLR), silnie zjonizowanego wewnętrznego regionu galaktyki, w której znajduje się AGN. Pomiar jasności na całej szerokości linii Hα może być użyty do określenia promienia BLR i prędkości znajdującej się w nim materii. Na podstawie tych danych autorzy mogą obliczyć masę czarnej dziury. I na podstawie tych kryteriów zidentyfikowali osiem obiektów, które mają szerokopasmową emisję Hα i są klasyfikowane jako AGN lub złożone przez diagnostykę BPT.

Chociaż dyspersję prędkości można zmierzyć na podstawie linii Hα, ważne jest, aby wielkość ta była niezależna od masy czarnej dziury. Tak więc dla każdego z tych AGN autorzy wykorzystali spektrograf Keck II Echellette do pomiaru trypletu Mg Ib i, jeżeli to możliwe, trypletu Ca II. Tam, gdzie były dostępne obie linie, całkowity rozrzut prędkości obliczano przy użyciu średniej z obu pomiarów. Niestety, niektóre galaktyki zajmują przesunięcia ku czerwieni, które powodują znaczne zanieczyszczenie na długości fal Ca II, więc gdy dyspersja prędkości Ca nie była dostępna, używano wartości Mg Ib.

Najnowszy artykuł podwoił liczbę czarnych dziur w galaktykach karłowatych wykreślonych na podstawie zależności dyspersji masy i prędkości. Uderzające jest to, że wszystkie AGNy zidentyfikowane w próbie są zgodne z wykreślonymi relacjami. Znalezienie czarnych dziur o małej masie, które leżą w tych relacjach, może pomóc w rozszerzeniu zakresu mas, w którym, jak uważają autorzy, czarne dziury i ich galaktyki macierzyste bezpośrednio oddziałują. Dzisiejsze wyniki pokazują dalsze dowody sugerujące, że czarne dziury w galaktykach karłowatych oddziałują ze swoimi gospodarzami w podobny sposób. Dzięki tej wiedzy astronomowie mogą lepiej zrozumieć, w jaki sposób czarne dziury w całym spektrum mas rosną i oddziałują ze swoimi galaktykami.

Chociaż sam w sobie jest to cenny wynik, autorzy tej pracy byli również zainteresowani tym, co masy czarnych dziur mogą nam powiedzieć o ich powstawaniu we wczesnym Wszechświecie. Gdyby zapadanie się gwiazd zdominowało wczesne formowanie się czarnych dziur, to naukowcy spodziewali by się, że będą miały mniejszą masę. Z drugiej strony, gdyby dominował bezpośredni kolaps, spodziewali by się, że czarne dziury będą nadmiernie masywne. Niestety, fakt, że wszystkie te masy są zgodne z wykreślonymi relacjami, nie daje ostatecznej odpowiedzi, który mechanizm jest bardziej prawdopodobny.

Jednak autorzy pracy próbują wyciągnąć pewne wnioski z pojedynczej czarnej dziury i faktu, że ich wszystkie czarne dziury zostały znalezione, ponieważ były to ANGy. Jak wcześniej wspomniano, AGNy są czarnymi dziurami akreującymi materię z dużą szybkością, co nie tylko powoduje, że czarne dziury emitują promieniowanie, ale także prowadzi do wzrostu ich masy. Ze względu na akrecję autorzy pracy uważają, że tym, co wykryli, mogą być czarne dziury, które są bardziej masywne w porównaniu z resztą populacji czarnych dziur znajdujących się w galaktykach karłowatych. Zdaniem autorów, ekstremalnie niska masa czarnej dziury, która nie jest AGN, może być przykładem reprezentatywnym dla tej szerszej populacji czarnych dziur galaktyk karłowatych. Jeżeli to założenie jest poprawne, wskazywałoby na zapadnięcie się gwiazdy jako preferowany mechanizm powstawania we wczesnym Wszechświecie. Chociaż jest to intrygujący argument, nadal ma charakter spekulacyjny. Zanim będziemy mogli wyciągnąć mocne wnioski na temat tego, jak powstały czarne dziury we wczesnym Wszechświecie, konieczne będzie wykonanie wielu dalszych pomiarów, aby określić, czy te ekstremalnie niskie masy czarnych dziur są wyjątkiem, czy regułą.

Opracowanie:
Agnieszka Nowak

Źródło:
AAS

Vega


Załączniki:
800px-Fornax_dwarf_galaxy.jpg
800px-Fornax_dwarf_galaxy.jpg [ 210.18 KiB | Przeglądany 543 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 28 sierpnia 2020, 18:56 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Misje NASA badają aktywną galaktykę „Myśliwiec TIE”

Nie tak dawno astronomowie sporządzili mapę odległej galaktyki wykorzystując fale radiowe i stwierdzili, że ma ona uderzająco znajomy kształt. Odkryli obiekt o nazwie TXS 0128+554, który w ostatnim stuleciu doświadczył dwóch potężnych nawrotów aktywności.

Około pięć lat temu teleskop Fermi odkrył, że TXS 0128+554 (w skrócie TXS 0128) jest słabym źródłem promieniowania gamma, czyli formy światła o najwyższej energii. Od tego czasu naukowcy przyglądali mu się bliżej, korzystając z radioteleskopu VLBA oraz obserwatorium rentgenowskiego Chandra.

„Po ogłoszeniu Fermiego, przybliżyliśmy obraz galaktyki milion razy, używając anten radiowych VLBI i sporządziliśmy mapę jej kształtu w czasie. Kiedy po raz pierwszy zobaczyłem wyniki, od razu pomyślałem, że wygląda jak myśliwiec TIE Dartha Vadera z filmu 'Gwiezdne wojny: Część IV – Nowa nadzieja'. To była zabawna niespodzianka, ale jego pojawienie się na różnych częstotliwościach radiowych również pomogło nam dowiedzieć się więcej o tym, jak aktywne galaktyki mogą się radykalnie zmieniać w skali dziesięciolecia” – powiedział Matthew Lister, profesor fizyki i astronomii na Uniwersytecie Purdue w West Lafayette w stanie Indiana.

TXS 0128 znajduje się 500 mln lat świetlnych od nas, w konstelacji Kasjopei, zakotwiczona przez supermasywną czarną dziurę o masie ok. 1 mld słońc. Została sklasyfikowana jako galaktyka aktywna, co oznacza, że wszystkie jej gwiazdy łącznie nie mogą odpowiadać za ilość emitowanego przez nią światła.

Dodatkowa energia aktywnej galaktyki ma nadmiar promieniowania radiowego, rentgenowskiego i gamma. Naukowcy uważają, że emisja ta pochodzi z regionów, czy płatów, w pobliżu centralnej czarnej dziury, gdzie wirujący dysk gazu i pyłu gromadzi się i nagrzewa pod wpływem sił grawitacyjnych i tarcia.

Około 10% aktywnych galaktyk wytwarza parę dżetów, wiązek wysokoenergetycznych cząstek poruszających się z prędkością bliską prędkości światła, w przeciwnych kierunkach z biegunów. Astrofizycy uważają, że dżety wytwarzają promienie gamma. W niektórych przypadkach zderzenia z gazem międzygalaktycznym ostatecznie spowalniają i zatrzymują ruch cząsteczek dżetu na zewnątrz, a materia zaczyna płynąć z powrotem w kierunku centrum galaktyki. Powoduje to powstawanie szerokich obszarów wypełnionych szybko poruszającymi się cząsteczkami, krążących po spirali wokół pól magnetycznych. Interakcje cząsteczek tworzą jasną emisję radiową.

Fermi zidentyfikował ponad 3000 aktywnych galaktyk wykorzystując swój Large Area Telescope, który dokonuje przeglądu całego nieba co trzy godziny. Prawie wszystkie z tych galaktyk są ustawione tak, że jeden dżet jest skierowany bezpośrednio na Ziemię, co wzmacnia ich sygnały. TXS 0128 jest jednak około 100 000 razy mniej wydajna niż większość z nich. W rzeczywistości, mimo że jest stosunkowo blisko, Fermi musiał gromadzić dane z galaktyki przez pięć lat, zanim w 2015 roku zgłoszono ją jako źródło promieniowania gamma.

Pomiary z VLBA dostarczają szczegółową mapę TXS 0128 na różnych częstotliwościach radiowych. Struktura radiowa, którą odkryli, rozciąga się na 35 lat świetlnych i odchyla się o około 50o od linii naszego widzenia. Ten kąt oznacza, że dżety nie są skierowane bezpośrednio na nas i może wyjaśniać, dlaczego galaktyka jest tak słaba w promieniach gamma.

Gdyby galaktyka była usytuowana tak, aby dżety były prostopadłe do naszej linii wzroku, całe światło docierało by do Ziemi w tym samym czasie. Zobaczylibyśmy obie strony na tym samym etapie rozwoju, na jakim są w rzeczywistości.

Pozorny kształt galaktyki zależy od wykorzystywanej częstotliwości radiowej. Przy 2,3 GHz, około 21 razy większej niż maksymalna częstotliwość nadawania radia FM, wygląda jak bezkształtna plama. Kształt myśliwca TIE pojawia się przy 6,6 GHz. Następnie przy 15,4 GHz między jądrem galaktyki a jej płatami pojawia się wyraźna luka w emisji radiowej.

Zespół Listera podejrzewa, że lukę tę stworzył zastój w aktywności TXS 0128. Wydaje się, że dżety w galaktyce pojawiły się około 90 lat temu, jak zaobserwowano z Ziemi, a następnie zatrzymały się około 50 lat później, pozostawiając niepołączone płaty. Następnie, mniej więcej dziesięć lat temu, dżety ponownie się włączyły, wytwarzając emisję widzianą bliżej jądra. Nie jest jasne, co spowodowało nagły początek tych aktywnych okresów.

Emisja radiowa rzuca również światło na lokalizację sygnału promieniowania gamma w galaktyce. Wielu teoretyków przewidywało, że młode, radiowo jasne, aktywne galaktyki wytwarzają promieniowanie gamma, gdy ich dżety zderzają się z gazem międzygalaktycznym. Ale przynajmniej w przypadku TXS 0128 cząsteczki w płatach nie wytwarzają wystarczającej łącznej energii, aby wygenerować wykryte promieniowanie gamma. Zespół Listera uważa, że zamiast tego, dżety galaktyki wytwarzają promienie gamma bliżej jądra, tak jak większość aktywnych galaktyk, które widzi Fermi.

Zespół obserwował galaktykę w promieniach X za pomocą obserwatorium Chandra, szukając dowodów na otaczający ją kokon zjonizowanego gazu. Chociaż ich pomiary nie mogły potwierdzić obecności lub braku kokonu, istnieją dowody na obecność takich struktur w innych aktywnych galaktykach, takich jak np. Cygnus A, który jest zgodny z nachylonym kątem linii widzenia.

Opracowanie:
Agnieszka Nowak

Źródło:
NASA

Vega


Załączniki:
txs0128_sloan_circled.jpg
txs0128_sloan_circled.jpg [ 328.87 KiB | Przeglądany 540 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 30 sierpnia 2020, 20:19 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Możliwości wynikające z nowo odkrytego układu planetarnego

Mniej niż 250 lat świetlnych od Ziemi znajdują się dwie nowo odkryte planety okrążające gwiazdę podobną do naszej własnej. Nowe badanie przedstawia te odkrycia i bada, czego możemy się nauczyć z przyszłych obserwacji ich pękatych atmosfer.

Identyfikacja idealnych celów
Misja TESS została zaprojektowana specjalnie do poszukiwania tranzytów planet mniejszych niż 4 promienie Ziemi, krążących wokół jasnych gwiazd – i znalazła już ponad 1000 kandydatów na planety, a do końca misji oczekuje się ich 10 000. Te odkrycia pomogą nam lepiej zrozumieć przejścia między planetami skalistymi, takimi jak Ziemia, które mają zwartą atmosferę, a gazowymi pod-Neptunami, które mają rozszerzone, spuchnięte atmosfery.

Wraz ze zbliżającym się startem Kosmicznego Teleskopu Jamesa Webba (JWST), naukowcy chcieliby szczegółowo zidentyfikować odkrycia TESS, które będą idealnymi kandydatami do spektroskopii tranzytowej przy pomocy właśnie JWST. Spektroskopia tranzytowa pozwala nam badać atmosfery pobliskich planet przechodzących przed tarczami ich jasnych gwiazd macierzystych.

W nowej publikacji zespół naukowców pod kierownictwem Ilarii Carleo (Uniwersytet Wesleyan; Obserwatorium Astronomiczne INAF w Padwie, Włochy) opisuje szczegółowo identyfikację kandydata TESS na planetę tranzytującą w pobliskim układzie TOI-421. Prowadząc wszechstronną kampanię uzupełniającą z wykorzystaniem fotometrii naziemnej, obrazowania optyki adaptatywnej i spektroskopii, Carleo i jej współpracownicy nie tylko potwierdzili kandydata TESS, ale także odkryli drugą planetę krążącą w tym samym układzie.

Para napuszonych planet
Cały czas znajdujemy planety – więc co sprawia, że warto mówić o TOI-421 b i c? Szczegółowa charakterystyka planet dokonana przez Carleo i jej współpracowników pokazuje intrygujące właściwości, które mogą pomóc nam dowiedzieć się więcej o przejściach między skalistymi Ziemiami a gazowymi Neptunami.

Planeta wewnętrzna, TOI-421 b, ma gęstość podobną do Neptuna – pomimo faktu, że masa planety jest mniejsza niż połowa masy Neptuna. Korzystając z modeli strat atmosferycznych, zespół Carleo wykazał, że ta zagadkowa planeta – która leży na burzliwej 5-dniowej orbicie bardzo blisko swojej gorącej gwiazdy macierzystej – powinna była stracić całą zdominowaną przez wodór atmosferę we wczesnym okresie swojego życia. Mimo to niska gęstość TOI-421 b silnie wskazuje na obecność pękatej wodorowej atmosfery. Oczywiście potrzebne będą dalsze badania, aby lepiej zrozumieć, co pominęliśmy w tej tajemniczej planecie.

Jeżeli chodzi o TOI-421 c, ta zewnętrzna planeta ma mniej więcej taką samą masę jak Neptun, ale jej gęstość jest wyjątkowo niska – gęstość TOI-421 c jest mniejsza niż połowa gęstości Neptuna. Autorzy pracy pokazują, że duży promień tej planety i spokojność jej gwiazdy macierzystej powinny uczynić ją idealnym celem do dalszych charakterystyk atmosferycznych.

Modele Carleo i współpracowników sugerują, że rozszerzone atmosfery tych planet można badać za pomocą obserwacji w ultrafiolecie, takich jak te z Hubble’a. Autorzy przedstawiają również szczegółowe prognozy tego, co spodziewają się znaleźć w widmach transmisyjnych dwóch planet z JWST.

Porównanie tych przewidywań z przyszłymi obserwacjami układu TOI-421 z pewnością dostarczy cennych informacji o tych intrygujących, pękatych planetach.

Opracowanie:
Agnieszka Nowak

Źródło:
AAS

Vega


Załączniki:
KeplerArtistConcept_16x9_full-1.jpg
KeplerArtistConcept_16x9_full-1.jpg [ 325.19 KiB | Przeglądany 528 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 31 sierpnia 2020, 17:25 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Hubble mapuje olbrzymie halo wokół galaktyki Andromedy

W nowym badaniu naukowcy zmapowali olbrzymią otoczkę gazu, zwaną halo, otaczającą galaktykę Andromedy, naszego najbliższego dużego galaktycznego sąsiada. Naukowcy byli zaskoczeni gdy odkryli, że to cienkie, prawie niewidoczne halo rozproszonej plazmy rozciąga się 1,3 mln lat świetlnych od galaktyki – mniej więcej połowa drogi do naszej Drogi Mlecznej – i aż do 2 mln lat świetlnych w niektórych kierunkach. Oznacza to, że halo Andromedy już wpada w halo naszej własnej galaktyki.

Odkryli również, że halo ma strukturę warstwową, z dwiema głównymi zagnieżdżonymi i odrębnymi powłokami gazu. Jest to najbardziej wszechstronne badanie halo otaczającego galaktykę.

„Zrozumienie ogromnych halo otaczających galaktyki jest niezwykle ważne. Ten rezerwuar gazu zawiera paliwo dla przyszłego formowania się gwiazd w galaktyce, a także wypływów ze zdarzeń, takich jak np. supernowe. Zawiera wiele wskazówek dotyczących przeszłej i przyszłej ewolucji galaktyki i wreszcie jesteśmy w stanie szczegółowo zbadać ją u naszego najbliższego galaktycznego sąsiada” – wyjaśnia współbadaczka Samantha Berek z Uniwersytetu Yale w New Haven w stanie Connecticut.

„Odkrywamy, że wewnętrzna powłoka, która rozciąga się na około pół mln lat świetlnych, jest znacznie bardziej złożona i dynamiczna. Zewnętrzna powłoka jest gładsza i cieplejsza. Ta różnica prawdopodobnie jest wynikiem wpływu aktywności supernowej na dysk galaktyki, który ma z kolei bezpośredni wpływ na wewnętrzne halo” – wyjaśnił kierownik badań Nicolas Lehner z University of Notre Dame w Indianie.

Znakiem rozpoznawczym tego działania jest odkrycie przez zespół dużej ilości ciężkich pierwiastków w gazowym halo Andromedy. Cięższe pierwiastki są gotowane we wnętrzach gwiazd, a następnie wyrzucane w kosmos – czasami gwałtownie, gdy gwiazda umiera. Następnie, w wyniku gwiezdnych eksplozji, halo zostaje zanieczyszczone tą materią.

Galaktyka Andromedy, znana również jako M31, jest majestatyczną spiralą prawdopodobnie mającą nawet 1 bilion gwiazd i wielkość porównywalną z naszą Drogą Mleczną. Znajdując się w odległości 2,5 mln lat świetlnych jest tak blisko nas, że na niebie galaktyka wygląda jak smuga światła w kształcie cygara. Gdyby jej gazowe halo można było zobaczyć nieuzbrojonym okiem, byłoby około 3 razy szersze od Wielkiego Wozu. Byłby to z pewnością największy element nocnego nieba.

W ramach programu o nazwie Projekt AMIGA (Absorption Map of Ionized Gas in Andromeda – mapa absorpcji zjonizowanego gazu w Andromedzie) naukowcy zbadali światło pochodzące od 43 kwazarów – bardzo odległych, jasnych jąder aktywnych galaktyk zasilanych przez czarne dziury – znajdujących się daleko poza Andromedą. Kwazary są rozproszone za halo, co umożliwia naukowcom badanie wielu regionów. Patrząc przez halo na światło kwazarów, zespół zaobserwował, jak to światło jest absorbowane przez halo Andromedy i jak zmienia się ta absorpcja w różnych regionach. Ogromne halo Andromedy składa się z bardzo rzadkiego i zjonizowanego gazu, który nie emituje łatwo wykrywalnego promieniowania. Dlatego śledzenie pochłaniania światła pochodzącego ze źródła tła jest lepszym sposobem sondowania tej materii.

Naukowcy wykorzystali wyjątkową zdolność spektrografu Hubble’a COS (Cosmic Origins Spectrograph) do badania promieniowania ultrafioletowego z kwazarów. Promieniowanie ultrafioletowe jest pochłaniane przez ziemską atmosferę, co uniemożliwia obserwacje za pomocą teleskopów naziemnych. Zespół wykorzystał COS do wykrycia zjonizowanego gazu z węgla, krzemu i tlenu. Atom zostaje zjonizowany, gdy promieniowanie usunie z niego jeden lub więcej elektronów.

Halo Andromedy było już wcześniej badane przez zespół Lehnera. W 2015 roku odkryli, że jest ono duże i masywne. Ale było niewiele śladów jego złożoności; teraz jest odwzorowane bardziej szczegółowo, co prowadzi do znacznie dokładniejszego określenia jego rozmiaru i masy.

Ponieważ żyjemy wewnątrz Drogi Mlecznej, naukowcy nie są w stanie z łatwością zinterpretować sygnatury halo naszej własnej galaktyki. Jednak uważają, że halo Andromedy i Drogi Mlecznej muszą być bardzo podobne, ponieważ te dwie galaktyki są dość do siebie podobne. Obie znajdują się na kursie kolizyjnym i połączą się, tworząc olbrzymią galaktykę eliptyczną. Rozpocznie się ono za 4 mld lat.

Naukowcy zbadali gazowe halo z bardziej odległych galaktyk, ale są one znacznie mniejsze na niebie, co oznacza, że liczba wystarczająco jasnych kwazarów tła potrzebnych do zbadania halo wynosi zwykle tylko jeden na galaktykę. Dlatego przestrzenne informacje zasadniczo są tracone. Dzięki bliskiej odległości od Ziemi gazowe halo Andromedy na niebie jest duże, co pozwala na uzyskanie znacznie większej ilości próbek.

Andromeda jest jedyną galaktyką we Wszechświecie, dla której można przeprowadzić ten eksperyment teraz, i tylko przy użyciu Hubble’a. Jedynie przy pomocy przyszłego teleskopu kosmicznego czułego na promieniowanie UV naukowcy będą mogli rutynowo przeprowadzać tego typu eksperymenty poza około 30 galaktykami wchodzącymi w skład Grupy Lokalnej.

Opracowanie:
Agnieszka Nowak

Źródło:
NASA

Vega


Załączniki:
stsci-h-p2046a-f-3000x2400.jpg
stsci-h-p2046a-f-3000x2400.jpg [ 4.8 MiB | Przeglądany 507 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 01 września 2020, 17:59 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Odkryto stałe wiatry w podczerwieni powstałe podczas erupcji czarnej dziury o masie gwiazdowej

Zespół naukowców po raz pierwszy wykrył stałą emisję podczerwieni z wiatrów powstałych podczas erupcji czarnej dziury w rentgenowskim układzie podwójnym. Do tej pory te przepływy materii były wykrywane tylko w innych zakresach długości fal, takich jak promieniowanie rentgenowskie lub widzialne, w zależności od fazy, w której czarna dziura konsumuje otaczającą ją materię. Badanie to stanowi pierwszy dowód na to, że wiatry są obecne podczas ewolucji erupcji, niezależnie od fazy, i jest to krok naprzód w naszym rozumieniu tajemniczych procesów akrecji na czarne dziury o masach gwiazdowych.

Rentgenowskie układy podwójne, jak sugeruje ich nazwa, są gwiazdami podwójnymi, które emitują promieniowanie rentgenowskie. Tworzy je zwarty obiekt, zwykle czarna dziura, z gwiezdnym towarzyszem. Małomasywne rentgenowskie układy podwójne mają towarzyszy o masach równych lub mniejszych od Słońca. W tych układach obydwa ciała krążą w tak małej odległości, że część masy gwiazdy wpada do studni grawitacyjnej czarnej dziury, tworząc wokół niej płaski dysk materii. Proces ten nazywa się akrecją a dysk – akrecyjnym.

Niektóre rentgenowskie układy podwójne, określane jako przejściowe, zmieniły się ze stanów spoczynkowych, w których ilość masy opadającej na czarną dziurę jest niewielka, a jej jasność jest zbyt niska, aby wykryć ją z Ziemi, do stanów erupcyjnych, w których czarna dziura ma zwiększoną szybkość akrecji, tak że materia w dysku nagrzewa się, osiągając wartości od jednego do dziesięciu mln Kelwinów. Podczas tych erupcji, które mogą trwać od kilku tygodni do kilku miesięcy, układ emituje duży strumień promieni rentgenowskich, a jego jasność wzrasta o kilka wielkości.

Nadal nie wiemy, jakie są fizyczne procesy zachodzące podczas tych epizodów akrecji. „Układy te są miejscami, w których materia poddawana jest działaniu pól grawitacyjnych należących do najsilniejszych we Wszechświecie, tak więc rentgenowskie układy podwójne są laboratoriami fizycznymi, które natura zapewnia nam do badania zwartych obiektów oraz zachowania otaczającej je materii” – wyjaśnia Javier Sánchez Sierras, badacz w IAC i pierwszy autor artykułu.

Jednym z najważniejszych procesów fizycznych, które naukowcy muszą zrozumieć, jest wyrzucanie materii lub wiatrów podczas epizodów akrecji. Według Teo Muñoza Dariasa, badacza IAC i współautora artykułu „badanie wiatrów w tych układach jest kluczem do zrozumienia procesów akrecji, ponieważ wiatry mogą usuwać nawet więcej materii, niż akreuje czarna dziura.”

Ten sam wiatr, różne stany
Artykuł, który niedawno ukazał się w Astronomy and Astrophysics Letters, przedstawia odkrycie wiatrów w podczerwieni z czarnej dziury MAXI J1820+070, emitowanych podczas erupcji, która miała miejsce w latach 2018-2019. W ciągu ostatnich dwudziestu lat obserwowano wiatry w promieniach X podczas erupcji, określane jako miękkie, w których dominuje promieniowanie emitowane przez dysk akrecyjny, wykazujące wysoką jasność. Niedawno ta sama grupa z IAC odkryła wiatry na widzialnych długościach fal w twardym stanie akrecji charakteryzujący się swoim wyglądem przypominającym dżet, który wychodzi zasadniczo prostopadle do dysku akrecyjnego i silnie emituje na falach radiowych.

Jak podkreśla Sánchez Sierras: „W niniejszym badaniu wykazaliśmy odkrycie wiatrów podczerwonych, które obecnie są zarówno w stanie twardej, jak i miękkiej akrecji, podczas pełnej ewolucji erupcji, tak że ich obecność nie zależy od stanu akrecji, i jest to pierwszy raz, kiedy tego typu wiatry są obserwowane.” Naukowcom udało się także wykazać, że właściwości kinematyczne wiatru są bardzo zbliżone do obserwowanych w 2019 roku w zakresie widzialnym i osiągają prędkości dochodzące do 1800 km/s.

„Dane sugerują, że wiatr jest taki sam w obu przypadkach, ale jego widoczność zmienia długość fali podczas ewolucji erupcji, co wskazywałoby, że układ w trakcie erupcji traci masę, a także moment pędu” – wyjaśnia Muñoz Darias. Wyniki te są bardzo ważne dla naukowców, ponieważ dodają nowy element do globalnego obrazu wiatrów w tych układach i stanowią krok naprzód w kierunku pełnego zrozumienia procesów akrecji na czarne dziury o masach gwiazdowych.

Opracowanie:
Agnieszka Nowak

Źródło:
IAC

Vega


Załączniki:
saved_by_the_wind_IR_1920x1080.jpg
saved_by_the_wind_IR_1920x1080.jpg [ 77.69 KiB | Przeglądany 499 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 02 września 2020, 18:40 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
W tej galaktyce to nie proces wygaszania

Wiemy, że wraz z wiekiem galaktyki przechodzą ze stanu, w którym posiadają niebieski, gwiazdotwórczy dysk do stanu czerwonych, spokojnych galaktyk eliptycznych, ale etapy ewolucji i zatrzymywanie się procesów gwiazdotwórczych (często nazywanych wygaszaniem) są nadal tajemnicze. Jedną wskazówką do odpowiedzi na te pytania mogą być galaktyki po wybuchu gwiazdotwórczym lub galaktyki, które niedawno przeszły okres intensywnego formowania się gwiazd i teraz są spokojne i ciche. Autorzy pracy badają właściwości gwiazd i gazu w galaktyce po procesie gwiazdotwórczym, aby wyjaśnić, jakie mechanizmy mogły powstrzymać powstawanie gwiazd.

Galaktyki po procesie gwiazdotwórczym zazwyczaj są pełne gwiazd typu A. Oznacza to, że ich okres formowania gwiazd musiał zatrzymać się kilka mld lat temu, w czasie życia gwiazd typu A na ciągu głównym. Uważa się, że mechanizm tłumienia powstawania gwiazd (cokolwiek go wyłącza) pozostawia ślad, ale sygnatura ta z czasem ulega osłabieniu, dlatego ważne jest, aby przyjrzeć się galaktykom zaraz po ukończeniu przez nie procesu gwiazdotwórczego.

SDSS J0912+1523 jest świeżą i niezwykłą galaktyką po ukończonym procesie gwiazdotwórczym. Masa jej gazu molekularnego stanowi około 30% masy gwiazd, znacznie więcej niż w innych podobnych galaktykach, co czyni ją interesującym celem. Z badań wynika, że galaktyka ta może mieć dwa jądra.

Autorzy pracy wykorzystali spektroskop z Gemini Observatory do przyjrzenia się właściwościom gwiazd w galaktyce. Szukali linii emisji tlenu, które ogólnie wskazują na powstawanie gwiazd ale nie znaleźli żadnych, czego można się spodziewać w przypadku wygaszonej galaktyki. Autorzy jednak znaleźli wiele absorpcji wodoru linii Balmera, ponieważ gwiazdy typu A mają w swoich widmach bardzo silne linie Balmera. Głębokość tych linii może faktycznie służyć jako wskaźnik zastępczy dla wieku gwiazd. Im głębsza linia absorpcji, tym nowszy epizod gwiazdotwórczy.

Aby określić ilościowo, jak głębokie były linie Balmera w każdym widmie, autorzy zastosowali ekwiwalent szerokości. Kiedy linia absorpcyjna opada poniżej kontinuum, istnieje pewien obszar między krzywą a kontinuum. Ekwiwalent szerokości to, ile kontinuum (w tym przypadku w Angstremach) zajęłoby utworzenie prostokąta z tym samym obszarem poniżej. Z badań wynika, że ekwiwalent szerokości w tej galaktyce nie zmienia się zbytnio w wewnętrznej części galaktyki, co oznacza, że wszystkie gwiazdy prawdopodobnie pochodzą ze wspólnej populacji, która uformowała się w tym samym czasie.

Widma zostały również wykorzystane do znalezienia prędkości i dyspersji prędkości. Mapa prędkości i trend wraz z odległością od centrum galaktyki pokazują, że galaktyka wyraźnie rotuje. Regularność w dyspersji prędkości wskazuje, że dwa jądra to ta sama galaktyka wirująca jako pojedynczy obiekt. Autorzy sugerują, że te dwa jądra mogą być pozostałościami po połączeniu się galaktyk lub pojedynczym jądrem z pasmem pyłu zasłaniającym jego część.

Autorzy pracy porównali także swoje odkrycia z danymi z ALMA, które pokazują zawartość gazu molekularnego w galaktyce. Prędkości gwiazd bardzo przypominają prędkość gazu molekularnego, więc gwiazdy i gaz prawdopodobnie wirują razem.

Co więc te informacje mówią nam o mechanizmie wygaszania procesu gwiazdotwórczego? Istnieje wiele pomysłów na to, co może powstrzymać powstawanie gwiazd. Zderzenia galaktyk mogą podgrzewać gaz i zapobiec jego zapadaniu się w gwiazdy. Gaz może opaść do centrum galaktyki, tworząc tam gwiazdy, ale pozostawiając pustą zewnętrzną część galaktyki, lub może zostać całkowicie z niej wyrzucony w postaci wypływu. Oczekuje się, że każdy z tych scenariuszy doprowadzi do pewnej dyspersji prędkości i zimnego gazu molekularnego. A ta galaktyka? Ze względu na dużą zawartość gazu molekularnego i stabilną dyspersję prędkości, nie pasuje dobrze do żadnego z tych scenariuszy. Autorzy pracy sugerują, że w grę może wchodzić coś innego – rodzaj wygaszania, w którym dysk galaktyki stabilizuje się przed kolapsem a to właśnie jest coś, co powoduje powstawanie gwiazd.

Ten cel jest bardzo interesującym przykładem przejścia od galaktyk gwiazdotwórczych do spokojnych. Kontynuacja badań takich tematów pozwoli astronomom określić, w jaki sposób galaktyki stają się czerwone i martwe.

Opracowanie:
Agnieszka Nowak

Źródło:
AAS

Vega


Załączniki:
heic0615a.jpg
heic0615a.jpg [ 269.02 KiB | Przeglądany 492 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 03 września 2020, 20:33 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Pierwsze w historii wykrycie połączenia się dwóch monstrualnych czarnych dziur

Połączenie się układu podwójnego czarnych dziur wytworzyło prawdopodobnie najmasywniejszą czarną dziurę wykrytą przy pomocy fal grawitacyjnych.

Mimo całej swojej ogromnej pustki Wszechświat brzęczy od aktywności w postaci fal grawitacyjnych. Wytwarzane przez ekstremalne zjawiska astrofizyczne, te pogłosy rozchodzą się i wstrząsają czasoprzestrzenią, jak brzęk kosmicznego dzwonu.

Teraz naukowcy wykryli sygnał z połączenia prawdopodobnie najbardziej masywnych czarnych dziur, jakie dotychczas zaobserwowano na falach grawitacyjnych. Produktem połączenia jest pierwsze wyraźne wykrycie czarnej dziury o masie pośredniej, która mieści się w przedziale między 100 a 1000 mas Słońca.

Sygnał, który został oznaczony jako GW190521, został wykryty 21 maja 2019 roku za pomocą LIGO, pary identycznych 4-kilometrowych interferometrów w USA; oraz Virgo, 3-kilometrowego detektora we Włoszech.

Sygnał ten jest niezwykle krótki, trwa mniej niż 1/10 sekundy. Z tego, co naukowcy obserwują wynika, że GW190521 został wygenerowany przez źródło oddalone o około 5 gigaperseków, gdy Wszechświat miał około połowy obecnego wieku, co czyni go jednym z najbardziej odległych wykrytych dotychczas źródeł fal grawitacyjnych.

W oparciu o potężny zestaw najnowocześniejszych narzędzi obliczeniowych i modelujących, naukowcy uważają, że sygnał GW190521 został najprawdopodobniej wygenerowany przez połączenie się układu podwójnego czarnych dziur o niezwykłych właściwościach.

Prawie każdy dotychczas potwierdzony sygnał fal grawitacyjnych pochodzi z połączenia się dwóch czarnych dziur lub dwóch gwiazd neutronowych. Ta najnowsza kolizja wydaje się być jak dotąd najbardziej masywna i obejmuje dwie imponujące czarne dziury o masach około 85 i 66 mas Słońca.

Nowy sygnał prawdopodobnie przedstawia moment, w którym dwie czarne dziury się połączyły. Fuzja stworzyła jeszcze bardziej masywną czarną dziurę, o masie około 142 mas Słońca i uwolniła ogromną ilość energii, odpowiadającą około 8 masom Słońca, rozprzestrzenioną po całym Wszechświecie w postaci fal grawitacyjnych.

Wyjątkowo duże masy dwóch imponujących czarnych dziur, a także powstałej z ich połączenia czarnej dziury, rodzą mnóstwo pytań dotyczących ich powstawania.

Wszystkie zaobserwowane do tej pory czarne dziury mieszczą się w jednej z dwóch kategorii: czarne dziury o masach gwiazdowych, które mają od kilku do dziesiątek mas Słońca i uważa się, że powstają, gdy umierają masywne gwiazdy; lub supermasywne czarne dziury, takie jak ta w centrum galaktyki Drogi Mlecznej, które są od setek tysięcy do miliardów razy masywniejsze niż nasze Słońce.

Jednak ostatnio wykryta czarna dziura o masie 142 Słońc, powstała w wyniku połączenia GW190521, znajduje się w pośrednim zakresie mas między czarnymi dziurami o masie gwiazdowej a supermasywnymi czarnymi dziurami – jest to pierwsza tego rodzaju czarna dziura, jaką kiedykolwiek wykryto.

Dwie czarne dziury, które utworzyły tę wspomnianą, również wydają się być wyjątkowe pod względem wielkości. Są tak masywne, że naukowcy podejrzewają, że jedna z nich lub obie mogły nie powstać z zapadającej się gwiazdy, jak to ma miejsce w przypadku czarnych dziur o masach gwiazdowych.

Zgodnie z fizyką ewolucji gwiazd, zewnętrzne ciśnienie fotonów i gazu w jądrze gwiazdy wspiera ją przeciwko sile grawitacji pchającej do wewnątrz, dzięki czemu gwiazda jest stabilna, podobnie jak Słońce. Po tym, jak serce masywnej gwiazdy spali jądra tak ciężkie jak żelazo, nie jest już w stanie wytworzyć wystarczającego ciśnienia, aby utrzymać warstwy zewnętrzne. Kiedy ciśnienie zewnętrzne jest mniejsze od grawitacji, gwiazda zapada się pod własnym ciężarem, w eksplozji zwanej supernową z zapadającym się jądrem, która może pozostawić po sobie czarną dziurę.

Proces ten może wyjaśnić, w jaki sposób gwiazdy o masie 130 mas Słońca mogą wytwarzać czarne dziury o masach do 65 mas Słońca. Uważa się, że w przypadku ciężkich gwiazd pojawia się zjawisko znane jako „niestabilność pary”. Kiedy fotony w jądrze stają się niezwykle energetyczne, mogą przekształcić się w parę elektron i antyelektron. Te pary wytwarzają mniejsze ciśnienie niż fotony, powodując, że gwiazda staje się niestabilna w obliczu zapaści grawitacyjnej, a wynikająca z tego eksplozja jest wystarczająco silna, aby nie pozostawić po niej nic. Jeszcze masywniejsze gwiazdy, powyżej 200 Słońc, ostatecznie zapadłyby się bezpośrednio w czarną dziurę o masie co najmniej 120 mas Słońca. Zapadająca się gwiazda nie powinna być zatem w stanie wytworzyć czarnej dziury o masach od około 65 do 120 mas Słońca – zakres ten jest znany jako „luka masy niestabilności pary”.

Ale teraz cięższa z dwóch czarnych dziur, które wytworzyły sygnał GW190521, mająca 85 mas Słońca, jest pierwszą jak dotąd wykrytą w obrębie tej luki.

Jedną z możliwości, którą badacze rozważają, jest połączenie hierarchiczne, w którym dwie czarne dziury same mogły powstać w wyniku połączenia się dwóch mniejszych czarnych dziur, zanim migrowały razem i ostatecznie się połączyły.

Pozostaje jeszcze wiele pytań dotyczących GW190521.

Gdy detektory LIGO i Virgo nasłuchują fal grawitacyjnych przechodzących przez Ziemię, automatyczne wyszukiwania przeczesują przychodzące dane w poszukiwaniu interesujących sygnałów. Te wyszukiwania mogą wykorzystywać dwie różne metody: algorytmy wybierające określone wzorce fal w danych, które mogły zostać wytworzone przez zwarte układy podwójne; i bardziej ogólne wyszukiwania typu „rozbłysk”, które zasadniczo szukają czegoś niezwykłego.

W przypadku GW190521 było to wyszukiwanie seryjne, które odebrało sygnał nieco wyraźniej, dając bardzo małą szansę, że fale grawitacyjne powstały z czegoś innego niż połączenie układu podwójnego.

Ale co, jeżeli coś zupełnie nowego wytworzyło te fale grawitacyjne? To kusząca perspektywa, a w swoim artykule naukowcy krótko rozważają inne źródła we Wszechświecie, które mogły wytworzyć wykryty przez nich sygnał. Być może, na przykład, fale grawitacyjne zostały wyemitowane przez zapadającą się gwiazdę w naszej galaktyce. Sygnał może również pochodzić ze struny kosmicznej powstałej w najwcześniejszych momentach istnienia Wszechświata – chociaż żadna z tych egzotycznych możliwości nie pasuje do danych ani do połączenia się układu podwójnego.

Opracowanie:
Agnieszka Nowak

Źródło:
MIT

Vega


Załączniki:
MIT-LIGO-02-PRESS.jpg
MIT-LIGO-02-PRESS.jpg [ 350.38 KiB | Przeglądany 464 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 04 września 2020, 16:40 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Gdzie powstają gwiazdy? Teleskop Spitzera bada regiony gwiazdotwórcze

Większość masywnych gwiazd we Wszechświecie rodzi się wewnątrz kosmicznych obłoków gazu i pyłu, gdzie zostawiają wskazówki dotyczące swojego życia, które astronomowie później mogą rozszyfrować.

Mgławica znana jako W51 jest jednym z najbardziej aktywnych obszarów gwiazdotwórczych w Drodze Mlecznej. Po raz pierwszy zidentyfikowana w 1958 roku przez radioteleskopy, tworzy bogaty kosmiczny gobelin na zdjęciu uzyskanym z wycofanego już z obserwacji Kosmicznego Teleskopu Spitzera.

Znajdująca się w odległości 17 000 lat świetlnych od Ziemi w kierunku konstelacji Orła, W51 ma około 350 lat świetlnych średnicy. Jest prawie niewidoczna przez teleskopy optyczne, ponieważ jej światło jest blokowane przez międzygwiazdowe obłoki pyłowe, które znajdują się pomiędzy W51 a Ziemią. Jednak dłuższy zakres widma elektromagnetycznego, taki jak fale radiowe i podczerwone, mogą przedrzeć się przez pył bez przeszkód. Oglądana w podczerwieni przez Spitzera W51 stanowi spektakularny widok: jej całkowita emisja w podczerwieni odpowiada 20 mln Słońc.

Gdybyś mógł zobaczyć nieuzbrojonym okiem, ten gęsty obłok gazu i pyłu wydawałby się mniej więcej tak duży, jak Księżyc w pełni. Mgławica Oriona – kolejny dobrze znany obszar gwiazdotwórczy i ulubiony cel amatorskich obserwacji astronomicznych – zajmuje mniej więcej taką samą powierzchnię na niebie. Ale W52 w rzeczywistości znajduje się znacznie dalej od Ziemi niż Orion i przez to jest znacznie większa i około 75 razy jaśniejsza. Podczas gdy Orion posiada 4 gwiazdy typu O – najmasywniejsze gwiazdy we Wszechświecie – W51 ma ich ponad 30.

„Fabryki gwiazd”, takie jak ta, mogą działać przez miliony lat. Olbrzymi czerwony region z prawej strony W51 jest starszy, co widać już po tym, jak został wyrzeźbiony przez wiatry z pokoleń masywnych gwiazd (takich, które mają co najmniej 10 mas Słońca). Pył i gaz są jeszcze bardziej zmiatane, gdy te gwiazdy umierają i eksplodują w postaci supernowych. W młodszej części mgławicy, z lewej strony, wiele gwiazd właśnie zaczyna usuwać gaz i pył w taki sam sposób, jak zrobiły to gwiazdy w starszym regionie. Widać, że wiele z tych młodych gwiazd jest w procesie formowania bąbli pustej przestrzeni wokół siebie.

To zdjęcie zostało wykonane przez Spitzera w 2004 roku jako część kampanii obserwacyjnej mającej na celu zmapowanie wielkoskalowej struktury Drogi Mlecznej – spore wyzwanie, ponieważ Ziemia znajduje się w jej wnętrzu. Przegląd nazwany GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) dostarczył również cennych danych na temat wielu cudów wewnątrz Drogi Mlecznej, w tym obrazy wielu gwiezdnych fabryk, takich jak W51, które były ukryte za pyłem przed teleskopami optycznymi.

Zdjęcia dostarczone przez Spitzera za pośrednictwem przeglądu GLIMPSE – w połączeniu z danymi z wielu innych, uzupełniających się teleskopów – dają naukowcom wgląd w to, w jaki sposób masywne gwiazdy tworzą się w naszej Drodze Mlecznej, a następnie jak ich potężne wiatry i promieniowanie oddziałują z pozostałą otaczającą materią. Nie możemy obserwować regionów gwiazdotwórczych w innych galaktykach z taką samą szczegółowością, z jaką mamy możliwość w przypadku naszej galaktyki. Zatem regiony takie, jak W51 są naprawdę ważne dla pogłębienia naszej wiedzy dotyczącej formowania się gwiazd w Drodze Mlecznej, co następnie możemy ekstrapolować na to, jak taki proces przebiega w innych galaktykach.

Opracowanie:
Agnieszka Nowak


Źródło:
Spitzer

Vega


Załączniki:
ssc2020-14a_Inline.jpg
ssc2020-14a_Inline.jpg [ 78.71 KiB | Przeglądany 458 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 06 września 2020, 17:21 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Pozostałości po gwiezdnej eksplozji nie spowolniły przez 400 lat

Zarejestrowano materię z dala od miejsca, w którym eksplodowała gwiazda, podróżującą z prędkością większą niż 32 mln km/h – około 25 000 razy szybciej niż wynosi prędkość dźwięku na Ziemi.

Pozostałość po supernowej Keplera (SN 1604) to szczątki zdetonowanej gwiazdy, która znajduje się około 20 000 lat świetlnych od Ziemi w naszej galaktyce. W 1604 roku pierwsi astronomowie, w tym Johannes Kepler, od którego imienia pochodzi nazwa pozostałości, zobaczyli eksplozję supernowej, która zniszczyła gwiazdę.

Teraz wiemy, że pozostałość po supernowej Keplera jest następstwem tak zwanej supernowej typu Ia, w której mała zwarta gwiazda – biały karzeł – przekracza granicę masy krytycznej po interakcji z gwiazdą towarzyszącą i przechodzi eksplozję termojądrową, która rozbija białego karła i wyrzuca jego pozostałości na zewnątrz.

Badanie śledziło prędkości 15 „węzłów” szczątków pozostałości po supernowej Keplera, wszystkie świecące w promieniach X. Zmierzono, że najszybszy węzeł miał prędkość 37 mln km/h, najwyższą prędkość, jaką kiedykolwiek wykryto dla pozostałości po supernowej w promieniach rentgenowskich. Średnia prędkość węzłów wynosi około 16 mln km/h.

Zaskakujące jest to, że te węzły poruszają się z tak dużymi prędkościami po ponad 400 latach od eksplozji. Może to oznaczać, że ich gęstość musi być dość duża a to oznacza, że eksplozja była bardzo niejednorodna.

Naukowcy oszacowali prędkość węzłów analizując widma rentgenowskie – jasność promieni rentgenowskich o różnych długościach fal – uzyskane w 2016 roku za pomocą Chandra High Energy Transmission Grating. Porównując długości fal właściwości w widmie rentgenowskim z wartościami laboratoryjnymi i wykorzystując efekt Dopplera, zmierzyli prędkość każdego węzła wzdłuż linii pola widzenia Chandra na pozostałość po supernowej.

Astronomowie wykorzystali również obrazy z Chandra uzyskane w latach 2000, 2004, 2006 i 2014 do wykrycia zmian położenia węzłów w czasie. Użyli tych zmian położenia do pomiarów prędkości węzłów prostopadle do naszego pola widzenia. Połączono te dwa pomiary w celu oszacowania rzeczywistej prędkości każdego węzła w przestrzeni trójwymiarowej.

Wysokie prędkości z pozostałości są podobne do tych, które naukowcy widzieli w obserwacjach optycznych wybuchów supernowych w innych galaktykach zaledwie w kilka dni lub tygodni po eksplozji, na długo przed powstaniem pozostałości po supernowej dziesiątki lat później. To porównanie sugeruje, że niektóre węzły w tej pozostałości zostały niewiele spowolnione w ciągu 400 lat od wybuchu przez zderzenie z materią otaczającą pozostałość.

Bazując na obserwacjach widma z użyciem Chandra okazuje się, że osiem z piętnastu węzłów zdecydowanie oddala się od Ziemi, i potwierdzono, że tylko dwa poruszają się w naszym kierunku. Pozostałe pięć nie pokazuje wyraźnego kierunku ruchu wzdłuż linii pola widzenia. Ta asymetria ruchu węzłów oznacza, że pozostałości mogą nie być symetryczne wzdłuż naszej linii wzroku, ale należy zbadać więcej węzłów, aby potwierdzić ten wynik.

Cztery z węzłów poruszają się w podobnym kierunku i zawierają podobną ilość cięższych pierwiastków, takich jak krzem. Naukowcy sugerują, że materia w tych węzłach prawdopodobnie pochodzi z samej powłoki eksplodującego białego karła.

Jeden z innych najszybciej poruszających się węzłów znajduje się w „uchu” po prawej stronie pozostałości, co potwierdza intrygującą ideę, że trójwymiarowy kształt szczątków przypomina bardziej piłkę nożną niż jednolitą kulę – stwierdzili naukowcy.

Wyjaśnienie dużej szybkości materii jest niejasne. Niektórzy naukowcy zasugerowali, że pozostałość po supernowej Keplera pochodzi z niezwykle silnej supernowej typu Ia, co może wyjaśniać bardzo szybko poruszającą się materię. Możliwe jest również, że najbliższe otoczenie wokół pozostałości samo w sobie jest zbrylone, co może pozwalać niektórym szczątkom na tunelowanie przez regiony o niskiej gęstości i uniknięcie znacznego spowolnienia.

Opracowanie:
Agnieszka Nowak

Źródło:
Penn State

Vega


Załączniki:
kepler_inset_locations_2014.jpg
kepler_inset_locations_2014.jpg [ 114.45 KiB | Przeglądany 436 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 08 września 2020, 16:31 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Nowe spojrzenie na życie masywnych gwiazd

Masywne gwiazdy to takie, które są większe niż ok. 10 mas Słońca i powstają znacznie rzadziej niż ich odpowiedniki o małej masie. Jednak w największym stopniu przyczyniają się one do ewolucji gromad gwiazd i galaktyk. Masywne gwiazdy są prekursorami wielu barwnych i energetycznych zjawisk we Wszechświecie, od wzbogacania swojego otoczenia eksplozjami supernowych po zmianę dynamiki ich układów.

Najlepszym narzędziem do badania masywnych gwiazd są „szczegółowe kody ewolucji gwiazd”: programy komputerowe, które mogą obliczać zarówno strukturę wewnętrzną, jak i ewolucję tych gwiazd. Niestety, są one obliczeniowo kosztowne i czasochłonne – obliczenie ewolucji pojedynczej gwiazdy może zająć kilka godzin. Z tego powodu stosowanie tych kodów do modelowania gwiazd w złożonych układach, takich jak gromady kuliste, które mogą zawierać miliony oddziałujących gwiazd, jest niepraktyczne.

Aby rozwiązać ten problem, zespół naukowców opracował kod ewolucji gwiazd, nazwany METISSE (METhod of Interpolation for Single Star Evolution – Metoda interpolacji dla ewolucji pojedynczej gwiazdy). Interpolacja to metoda szacowania ilości w oparciu o pobliskie wartości, takie jak szacowana wielkość gwiazdy na podstawie rozmiarów gwiazd o podobnych masach. METISSE wykorzystuje interpolację do szybkiego obliczania właściwości gwiazdy w dowolnym momencie przy użyciu wybranych modeli gwiazd obliczonych za pomocą szczegółowych kodów ewolucji gwiazd.

METISSE może dokonać obliczeń ewolucji 10 000 gwiazd w 3 minuty. Co najważniejsze, może wykorzystywać różne zestawy modeli gwiazd do przewidywania ich właściwości, co jest niezwykle ważne w przypadku masywnych gwiazd. Tego typu gwiazdy są rzadkością, a ich złożone i krótkie życie utrudnia dokładne określenie ich właściwości. W konsekwencji szczegółowe kody ewolucji gwiazd często wymagają różnych założeń podczas obliczania ewolucji tych gwiazd. Różnice w założeniach stosowanych przez różne kody ewolucji gwiazd mogą znacząco wpłynąć na ich przewidywania dotyczące życia i właściwości masywnych gwiazd.

Poojan Agrawal – badaczka OzGrav i główna autorka badania – wyjaśnia: „Dokonaliśmy interpolacji gwiazd, które miały od 9 do 100 mas Słońca i porównaliśmy przewidywania dotyczące ostatecznego losu tych gwiazd. W przypadku większości masywnych gwiazd w naszym zbiorze odkryliśmy, że masy pozostałości gwiazdowych (gwiazd neutronowych lub czarnych dziur) mogą różnić się nawet o 20 mas Słońca.”

Kiedy pozostałości gwiazdowe się łączą, tworzą fale grawitacyjne – zmarszczki w czasie i przestrzeni – które naukowcy mogą wykrywać. Dlatego wyniki tego badania będą miały ogromny wpływ na przyszłe prognozy w astronomii fal grawitacyjnych.

Agrawal dodaje: „METISSE to dopiero pierwszy krok w odkryciu roli, jaką masywne gwiazdy odgrywają w układach gwiazdowych, takich jak gromady gwiazd, a wyniki już są bardzo ekscytujące.”

Opracowanie:
Agnieszka Nowak

Źródło:
OzGrav

Vega


Załączniki:
poojan-eso1030c_orig.jpg
poojan-eso1030c_orig.jpg [ 28.25 KiB | Przeglądany 404 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 10 września 2020, 16:32 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Masywne halo ostatecznie wyjaśnia strumień gazu wirujący wokół Drogi Mlecznej

Droga Mleczna w swoim sąsiedztwie nie jest samotna. Przechwyciła na swoją orbitę mniejsze galaktyki, a dwie największe z nich znane są jako Mały i Wielki Obłok Magellana, widoczne jako bliźniacze pyłowe smugi na południowej półkuli.

Gdy Obłoki Magellana zaczęły okrążać Drogę Mleczną miliardy lat temu, został z nich wyrwany ogromny strumień gazu znany jako Strumień Magellana. Rozciąga się on teraz na ponad połowę nocnego nieba. Jednak astronomowie nie potrafili wyjaśnić, dlaczego strumień stał się tak masywny, osiągając masę ponad miliard razy większą od Słońca.

Teraz zespół astronomów odkrył, że halo ciepłego gazu otaczające Obłoki Magellana prawdopodobnie działa jak ochronny kokon osłaniający galaktyki karłowate przed halo Drogi Mlecznej i ma udział w większości masy Strumienia Magellana. Gdy mniejsze galaktyki weszły w sferę wpływów Drogi Mlecznej, części tego halo zostały rozciągnięte i rozproszone, tworząc Strumień Magellana. Naukowcy opublikowali swoje odkrycia 9 września w czasopiśmie Nature.

Jak wyjaśniają naukowcy, istniejące modele powstawania Strumienia są przestarzałe, ponieważ nie potrafią wyjaśnić jego masy i dlatego opracowali nowe rozwiązanie, które doskonale wyjaśnia tę zagadkę.

Starsze modele sugerowały, że pływy grawitacyjne i siła galaktyk napierających na siebie, utworzyły Strumień Magellana z Obłoków Magellana, gdy galaktyki karłowate weszły na orbitę wokół Drogi Mlecznej. Chociaż modele te mogły w dużej mierze wyjaśnić rozmiar i kształt strumienia, stanowiło to zaledwie 1/10 jego masy.

Niedawno astronomowie odkryli, że Obłoki Magellana są na tyle masywne, że otacza je ich własne halo ciepłego gazu. Elena D’Onghia, profesor astronomii na University of Wisconsin–Madison, która nadzorowała badania, i jej zespół zdali sobie sprawę, że to halo radykalnie zmienia sposób formowania się strumienia.

W nowych symulacjach przeprowadzonych przez Scotta Lucchiniego, absolwenta Wydziału Fizyki na UW-Madison i pierwszego autora artykułu, tworzenie się Strumienia Magellana podzielone jest na dwa okresy. Podczas gdy Obłoki Magellana wciąż były daleko od Drogi Mlecznej, Wielki Obłok Magellana przez miliardy lat odbierał gaz swojemu mniejszemu partnerowi. Ten skradziony gaz stanowi ostatecznie 10-20% końcowej masy strumienia.

Później, gdy obłoki opadły na orbitę wokół Drogi Mlecznej, halo oddało ⅕ swojej masy, aby utworzyć Strumień Magellana, który został rozciągnięty na olbrzymim łuku nieba w wyniku interakcji z grawitacją Drogi Mlecznej i jej własnym halo.

Nowy model jest pierwszym, który wyjaśnia pełną masę Strumienia Magellana a zdecydowana większość pochodzi ze zjonizowanego gazu, który jest bardziej energetyczny niż gaz niezjonizowany. Lepiej wyjaśnia również, w jaki sposób strumień przyjął swój nitkowaty kształt i dlaczego brakuje mu gwiazd – ponieważ został utworzony głównie z halo nie posiadającego gwiazd, a nie z samych galaktyk karłowatych.

Propozycję naukowców można teraz bezpośrednio przetestować. Teleskop Hubble’a powinien być w stanie dostrzec charakterystyczne sygnatury halo gazu otaczającego Obłoki Magellana.

W latach ‘90 ubiegłego stulecia grupa astronomów z UW-Madison odkryła pierwsze wskazówki, że Obłoki Magellana mogą mieć rozległe halo. Teraz dzięki lepszemu zrozumieniu wpływu halo na Strumień Magellana i jasnemu testowi na jego istnienie, jest szansa na wyjaśnienie wieloletniej tajemnicy pochodzenia strumienia, oferując pełniejszy obraz naszego galaktycznego sąsiedztwa.

Opracowanie:
Agnieszka Nowak

Źródło:
UW-Madison

Vega


Załączniki:
Jan_2014_hires.jpg
Jan_2014_hires.jpg [ 2.75 MiB | Przeglądany 388 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 11 września 2020, 16:56 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Wykrywanie zderzających się supermasywnych czarnych dziur: poszukiwania trwają

W ramach nowego badania opracowano innowacyjną metodę wykrywania zderzających się supermasywnych czarnych dziur. Badanie zostało opublikowane w Astrophysical Journal i było prowadzone przez dr. Xingjiang Zhu z OzGrav.

W centrum każdej galaktyki znajduje się supermasywna czarna dziura – czyli taka, która ma masę od milionów do miliardów razy większą od Słońca. Duże galaktyki składają się z mniejszych galaktyk, które się ze sobą łączą, więc oczekuje się, że zderzenia supermasywnych czarnych dziur będą powszechne. Jednak proces ten pozostaje nieuchwytny: jak dotąd nie znaleziono żadnych rozstrzygających dowodów na jego istnienie.

Jednym ze sposobów poszukiwania takich połączeń jest wykrywanie emitowanych przez nie fal grawitacyjnych – zmarszczek czasoprzestrzeni. Odległa, łącząca się para supermasywnych czarnych dziur krążących wokół siebie, emituje fale grawitacyjne. Ponieważ czarne dziury są tak duże, każdej fali dotarcie do Ziemi zajmuje wiele lat.

Astronomowie szukali oznak zderzania się supermasywnych czarnych dziur także w świetle widzialnym. Zostało zidentyfikowanych mnóstwo potencjalnych źródeł poprzez poszukiwanie regularnych fluktuacji jasności odległych galaktyk, zwanych kwazarami. Kwazary są niezwykle jasne i uważa się, że są napędzane przez gromadzenie się obłoków gazu na supermasywnych czarnych dziurach.

Jeżeli w centrum kwazara znajdują się dwie czarne dziury krążące wokół siebie (zamiast pojedynczej czarnej dziury), ruch orbitalny może zmienić akumulację obłoku gazu i prowadzić do okresowych zmian w jego jasności. Podczas takich poszukiwań zidentyfikowano setki kandydatów, ale astronomowie nie znaleźli jeszcze sygnału.

„Jeżeli uda nam się znaleźć parę łączących się supermasywnych czarnych dziur, to nie tylko powie nam o tym, jak ewoluowały galaktyki, ale ujawni także spodziewaną siłę sygnału fal grawitacyjnych dla obserwatorów pulsarów” – powiedział Zhu.

Naukowcy opracowali nową metodę, która pozwoli wyszukiwać okresowe sygnały i jednocześnie mierzyć właściwości szumów kwazara. Dlatego powinna dawać wiarygodne oszacowanie statystycznej ważności wykrytego sygnału.

Stosując tę metodę do jednego z najważniejszych kandydatów na źródło, nazwanego PG1302-102, naukowcy znaleźli mocne dowody na okresową zmienność; argumentowali jednak, że sygnał będzie prawdopodobnie bardziej skomplikowany niż przewidują obecne modele.

„Powszechnie przyjęty model szumu kwazara jest błędny. Dane ujawniają dodatkowe cechy w przypadkowych fluktuacjach gromadzenia się gazu na supermasywnych czarnych dziurach” – dodaje Zhu.

„Nasze wyniki pokazują, że kwazary są skomplikowane. Będziemy musieli ulepszyć nasze modele, jeżeli zamierzamy ich używać do identyfikacji układów podwójnych supermasywnych czarnych dziur” – mówi współpracownik i główny badacz OzGrav Eric Thrane.

Opracowanie:
Agnieszka Nowak

Źródło:
OzGrav

Vega


Załączniki:
supermassive-bh-nasa-jpl-caltech_orig.jpg
supermassive-bh-nasa-jpl-caltech_orig.jpg [ 123.62 KiB | Przeglądany 381 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 12 września 2020, 20:31 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Zespół badawczy odkrywa unikalną eksplozję supernowej

Sto milionów lat świetlnych od Ziemi wybuchła niezwykła supernowa.

Ta eksplodująca gwiazda, znana jako „supernowa LSQ14fmg” – była odległym obiektem odkrytym przez 37-osobowy międzynarodowy zespół naukowców. Ich badania, opublikowane w The Astrophysical Journal, pomogły odkryć pochodzenie grupy supernowych, do których należy ta gwiazda.

Charakterystyka tej supernowej – jaśnieje bardzo wolno, a także jest jedną z najjaśniejszych eksplozji w swojej klasie – nie przypomina żadnej innej.

Ta wybuchająca gwiazda to tak zwana supernowa typu Ia, a dokładniej członek grupy „super-Chandrasekhar”.

Gwiazdy przechodzą swojego rodzaju cykl życia, a te supernowe są eksplodującym finałem niektórych gwiazd o małej masie. Są tak potężne, że kształtują ewolucję galaktyk i tak potężne, że możemy je obserwować z Ziemi, nawet gdy znajdują się w połowie obserwowalnego Wszechświata.

Supernowe typu Ia były kluczowymi narzędziami do odkrywania tak zwanej ciemnej energii. Pomimo ich ważności, astronomowie niewiele wiedzieli o pochodzeniu wybuchów tych supernowych, poza tym, że są to eksplozje termojądrowe białych karłów.

Jednak zespół badawczy wiedział, że światło supernowej typu Ia wznosi się i opada w ciągu tygodni, zasilane radioaktywnym rozpadem niklu powstałym podczas eksplozji. Supernowa tego typu rozjaśnia się, gdy nikiel staje się bardziej odsłonięty, a następnie słabnie, gdy supernowa ostygnie, a nikiel rozpadnie się na kobalt i żelazo.

Po zebraniu danych z teleskopów w Chile i Hiszpanii, zespół badawczy zauważył, że supernowa uderzyła w otaczającą ją materię, co spowodowało uwolnienie większej ilości światła wraz ze światłem rozpadającego się niklu. Zobaczyli również dowody na produkcję tlenku węgla. Obserwacje te doprowadziły ich do pewnej konkluzji – supernowa eksplodowała wewnątrz czegoś, co wcześniej było gwiazdą na asymptotycznej gałęzi olbrzymów diagramu H-R (gwiazda typu AGB) w drodze do przekształcenia się w protomgławicę planetarną.

Naukowcy wysunęli teorię, że eksplozja była wywołana przez połączenie się jądra gwiazdy AGB i innego białego karła krążącego w jego zasięgu. Gwiazda centralna traciła znaczną ilość masy w postaci wiatru gwiazdowego, zanim ten proces utraty masy nagle się zatrzymał i utworzyła pierścień materii otaczający gwiazdę. Wkrótce po wybuchu supernowej, uderzyła w pierścień materii, co często możemy oglądać na zdjęciach pod postacią mgławicy planetarnej, i wytworzyła dodatkowe światło oraz zaobserwowane powolne pojaśnienie.

„Jest to pierwszy silny dowód obserwacyjny na to, że supernowa typu Ia może eksplodować w układzie mgławicy protoplanetarnej, i jest ważnym krokiem w zrozumieniu pochodzenia supernowych typu Ia. Te supernowe mogą być szczególnie kłopotliwe, ponieważ mogą mieszać się z próbką normalnych supernowych wykorzystywanych do badania ciemnej energii. Te badania pozwalają nam lepiej zrozumieć pochodzenie supernowych typu Ia i pomogą udoskonalić przyszłe badania nad ciemną energią” – powiedział Eric Hsiao, asystent profesora fizyki na Uniwersytecie Stanowym Florydy, który przewodził zespołowi badaczy.

Opracowanie:
Agnieszka Nowak

Źródło:
Florida State University

Vega


Załączniki:
Nebula-600x600.jpg
Nebula-600x600.jpg [ 7.66 KiB | Przeglądany 373 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 15 września 2020, 18:55 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Nowe dane Hubble'a sugerują, że w aktualnych teoriach ciemnej materii brakuje składnika

Obserwacje wykonane przez Kosmiczny Teleskop Hubble’a i Bardzo Duży Teleskop (VLT) wykazały, że w teorii zachowania ciemnej materii może czegoś brakować. Ów brakujący składnik może wyjaśniać, dlaczego naukowcy odkryli nieoczekiwaną rozbieżność pomiędzy obserwacjami stężeń ciemnej materii w próbce masywnych gromad galaktyk a teoretycznymi symulacjami komputerowymi dotyczącymi rozkładu ciemnej materii w gromadach. Nowe odkrycia wskazują, że niektóre niewielkie skupiska ciemnej materii powodują efekt soczewkowania grawitacyjnego, który jest 10 razy silniejszy niż oczekiwano.

Ciemna materia to niewidzialny klej, który utrzymuje razem gwiazdy, pył i gaz w galaktyce. Ta tajemnicza substancja stanowi podstawę wielkoskalowej struktury Wszechświata. Ponieważ ciemna materia nie emituje, nie pochłania i nie odbija światła, jej obecność jest znana jedynie dzięki przyciąganiu grawitacyjnemu widzialnej materii w przestrzeni. Astrofizycy i fizycy wciąż próbują ustalić, co to jest.

Gromady galaktyk, najmasywniejsze i niedawno zgrupowane struktury we Wszechświecie, są również największymi magazynami ciemnej materii. Gromady składają się z pojedynczych galaktyk, które są utrzymywane razem w dużej mierze przez grawitację ciemnej materii.

„Gromady galaktyk są idealnymi laboratoriami, w których można badać, czy dostępne obecnie symulacje numeryczne Wszechświata dobrze odtwarzają to, co możemy wywnioskować na podstawie soczewkowania grawitacyjnego. Przetestowaliśmy wiele danych w tym badaniu i jesteśmy pewni, że to niedopasowanie wskazuje, że brakuje jakiegoś składnika fizycznego albo w symulacjach, albo w naszym rozumieniu natury ciemnej materii” – powiedział Massimo Meneghetti z NAF-Observatory of Astrophysics and Space Science w Bolonii we Włoszech, główny autor badania.

Rozkład ciemnej materii w gromadach jest odwzorowany przez pomiar załamania światła – efekt soczewkowania grawitacyjnego – które wytwarzają. Grawitacja ciemnej materii skupiona w gromadach powiększa i zakrzywia światło z odległych obiektów tła, które pojawiają się na obrazach gromad. Soczewkowanie grawitacyjne często może również dawać wiele obrazów tej samej odległej galaktyki.

Im większe stężenie ciemnej materii w gromadzie, tym bardziej dramatyczny jest efekt zakrzywiania światła. Obecność mniejszych skupisk ciemnej materii związanych z poszczególnymi gromadami galaktyk zwiększa poziom zakrzywienia. W pewnym sensie gromada galaktyk działa jak wielka soczewka, w której osadzonych jest wiele mniejszych soczewek.

Najnowsze zdjęcia z Hubble’a zostały wykonane przez Wide Field Camera 3 i Advanced Camera for Surveys. W połączeniu z widmami z VLT, zespół stworzył dokładną mapę ciemnej materii. Mierząc zakrzywienia soczewkowania, astronomowie mogli prześledzić ilość i rozkład ciemnej materii. Trzy kluczowe gromady galaktyk, MACS J1206.2-0847, MACS J0416.1-2403 i Abell S1063, były częścią dwóch badań Hubble’a: The Frontier Fields oraz the Cluster Lensing And Supernova Survey with Hubble (CLASH).

Ku zaskoczeniu zespołu, oprócz dramatycznych łuków i wydłużonych właściwości odległych galaktyk wytworzonych przez soczewkowanie grawitacyjne każdej gromady, obrazy Hubble’a ukazały również nieoczekiwaną liczbę mniejszych łuków i zakrzywionych obrazów zagnieżdżonych w pobliżu jądra każdej gromady, gdzie rezydują galaktyki. Naukowcy są przekonani, że zagnieżdżone soczewki wytwarzane są przez grawitację gęstych skupisk materii wewnątrz poszczególnych galaktyk gromady. Dalsze obserwacje spektroskopowe mierzyły prędkość gwiazd krążących wewnątrz kilku gromad galaktyk, w celu ustalenia ich masy.

Łącząc obserwacje z Hubble’a ze spektroskopią z VLT, astronomowie byli w stanie zidentyfikować dziesiątki wielokrotnie obrazowanych, soczewkowanych galaktyk tła. Pozwoliło im to stworzyć dobrze skalibrowaną wysokiej rozdzielczości mapę rozkładu ciemnej materii w każdej gromadzie.

Zespół porównał mapy ciemnej materii z próbkami symulowanych gromad galaktyk o podobnych masach, znajdujących się w przybliżeniu w tych samych odległościach. Gromady w modelu komputerowym nie wykazały takiego samego poziomu koncentracji ciemnej materii w najmniejszych skalach – skalach powiązanych z poszczególnymi gromadami galaktyk.

Astronomowie z niecierpliwością czekają na dalsze badania ciemnej materii i jej tajemnic, aby w końcu określić jej naturę.

Opracowanie:
Agnieszka Nowak

Źródło:
Hubble Space Telescope

Vega


Załączniki:
heic2016a.jpg
heic2016a.jpg [ 64.94 KiB | Przeglądany 355 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 16 września 2020, 15:50 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Wietrzny dzień w Drodze Mlecznej

Turbulencje, czyli chaotyczne zmiany ciśnienia i prędkości pyłu, to jedna z największych tajemnic fizyki klasycznej. Wiadomo, że duża część gazu w galaktykach jest burzliwa, ale mechanizmy, które rozwinęły i utrzymują tę turbulencję, nadal są poznawane. Chociaż nadal nie znamy wszystkich fizycznych szczegółów stojących za turbulencjami, dużo czasu i wysiłku poświęcono na zidentyfikowanie statystyk, które mogą nam powiedzieć, czy gaz jest burzliwy czy nie. Innymi słowy, wiemy, jak wyglądają turbulencje, nawet jeżeli nie znamy wszystkich szczegółów ich działania. W nowej pracy naukowcy badają, w jaki sposób wiatry gwiazdowe z gromad gwiazd mogą wywoływać takie turbulencje.

Wiatry gwiazdowe, szczególnie te pochodzące od masywnych gwiazd np. typu O lub B, wydmuchują bąble w otaczający go zimny gaz, wypychając go na zewnątrz i pozostawiając pustkę. Są one podobne do bąbli, które obserwujemy na Ziemi, stworzone przez powietrze wepchnięte do innego ośrodka. W przypadku pęcherzy wiatru gwiazdowego „powietrze” jest materią gorącego wiatru gwiazdowego. Gdy w gromadzie gwiazd znajdują się masywne gwiazdy, ich bąble mają tendencję do nakładania się na siebie i tworzenia „superbąbla”. Jednym z niesamowitych jego przykładów jest Gromada Mgławicy w Orionie. Autorzy artykułu przeprowadzają symulacje, które z grubsza naśladują gwiezdny profil Gromady Mgławicy w Orionie i oni także odkrywają, że powstał duży superbąbel.

W tych symulacjach najmasywniejsze gwiazdy z dużą prędkością wyrzucają gorący gaz, który wypełnia superbąbel, i wypychają go na zewnątrz do chłodniejszego gazu. Ta ekspansja tworzy grubą powłokę o średniej temperaturze. Ponieważ powłoka ta jest gęstsza niż centralny gorący gaz, jest w stanie ochłodzić się szybciej i pozostać znacznie chłodniejsza niż wnętrze superbąbla. W miarę jak symulacja postępuje, w gorącym gazie wewnątrz powłoki pojawiają się turbulentne niestabilności.

Ciekawym wynikiem tych symulacji jest różnorodność prędkości, z jakimi porusza się gaz. Okazuje się, że powłoka bąbla porusza się z prędkością większą niż jeden Mach jako szok naddźwiękowy, który wciska się w otaczającą materię. Jednak gaz wewnętrzny jest praktycznie całkowicie poddźwiękowy i podlega silnym fluktuacjom prędkości w całym bąblu. Innymi słowy, chociaż wiatry wywołują naddźwiękowy szok, powodują poddźwiękowe turbulencje wewnątrz bąbla.

Aby upewnić się, że gorący gaz wewnątrz bąbla jest rzeczywiście burzliwy, autorzy wybrali statystykę znaną jako widmo mocy, która pozwala im zobaczyć, jak energia przechodzi od dużych do małych skal w symulacjach. Typowe oczekiwane widmo mocy dla turbulencji poddźwiękowych to prawo mocy o nachyleniu -5/3 (znane jako turbulencja Kołmogorowa). Autorzy odkryli, że w miarę upływu czasu ich symulacja z grubsza zbliża się do tego, co wskazuje, że w rzeczywistości wiatry gwiazdowe powodują głównie turbulencje poddźwiękowe.

Jest to ekscytujący wynik, który wskazuje, że gromady gwiazd mogą odgrywać znaczącą rolę w napędzaniu i utrzymywaniu turbulencji w galaktykach. Modelowanie turbulencji ma kluczowe znaczenie dla zrozumienia wielu procesów w ewolucji galaktyk, takich jak np. powstawanie gwiazd. Dzięki takim symulacjom astronomowie mogą lepiej zrozumieć, dlaczego gaz w galaktykach zachowuje się tak, jak się zachowuje i jak może tworzyć nowe gwiazdy, układy słoneczne, a nawet nas samych.

Opracowanie:
Agnieszka Nowak

Źródło:
AAS

Vega


Załączniki:
eso1723a.jpg
eso1723a.jpg [ 157.59 KiB | Przeglądany 351 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 18 września 2020, 20:58 
Online
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1250
Oddział PTMA: Kraków
Gwiezdny fosfor pomoże znaleźć egzoplanety potencjalnie nadające się do zamieszkania?

Badaczka z Southwest Research Institute zidentyfikowała gwiezdny fosfor jako prawdopodobny marker zawężający poszukiwanie życia w kosmosie. Opracowała techniki identyfikacji gwiazd, które mogą mieć egzoplanety, bazując na składzie chemicznym gwiazd, o których wiadomo, że mają planety, i proponuje, aby przyszłe badania skupiały się na gwiezdnym fosforze, by znaleźć układy o największym jakie znamy prawdopodobieństwie istnienia życia.

„Szukając egzoplanet i próbując sprawdzić, czy są zdatne do zamieszkania, ważne jest, aby planeta żyła aktywnymi cyklami, wulkanami i tektoniką płyt. Współautorka mojej pracy, dr Hilairy Hartnett, jest oceanografem i wskazała, że fosfor jest niezbędny dla wszelkiego życia na Ziemi. Jest niezbędny do tworzenia DNA, błon komórkowych, kości i zębów ludzi i zwierząt a nawet morskiego mikrobiomu planktonu” – mówi dr Natalie Hinkel z SwRI, astrofizyk planetarny i główna autorka nowego artykułu opublikowanego w Astrophysical Research Letters.

Określenie proporcji pierwiastków w ekosystemach egzoplanetarnych nie jest jeszcze możliwe, ale ogólnie przyjmuje się, że planety mają skład podobny do swoich gwiazd macierzystych. Naukowcy mogą spektroskopowo mierzyć obfitość pierwiastków w gwieździe, badając, jak światło oddziałuje z pierwiastkami w górnych warstwach jej atmosfery. Korzystając z tych danych, naukowcy mogą wnioskować, z czego zbudowane są planety krążące wokół gwiazdy, używając składu chemicznego gwiazd jako wskaźnika zastępczego dla ich planet.

Na Ziemi kluczowymi pierwiastkami w biologii są węgiel, wodór, azot, tlen, fosfor i siarka (czyli CHNOPS). W dzisiejszych oceanach fosfor jest uważany za najbardziej ograniczający składnik pokarmowy dla życia, ponieważ jest najmniej dostępną substancją chemiczną niezbędną do reakcji biochemicznych.

Hinkel wykorzystała katalogi Hypatia, publicznie dostępną bazę danych gwiazd, które opracowała, aby ocenić i porównać wskaźniki obfitości węgla, azotu, krzemu i fosforu w pobliskich gwiazdach z tymi zawartymi w przeciętnym morskim planktonie, skorupie ziemskiej, a także w krzemianach luzem na Ziemi i Marsie.

„Ale jest tak mało danych dotyczących obfitości fosforowej w gwiazdach, istnieją tylko dla około 1% gwiazd. To sprawia, że naprawdę trudno jest określić jakiekolwiek wyraźne trendy między gwiazdami, nie mówiąc już o roli fosforu w ewolucji egzoplanet” – mówi Hinkel.

Nie jest tak, że gwiazdom brakuje fosforu, ale pomiar tego pierwiastka jest trudny, ponieważ jest wykrywany w obszarze widma światła, którego zwykle się nie obserwuje: na krawędzi optycznej długości fali światła i promieniowania podczerwonego. Większość badań spektroskopowych nie jest dostrojona do znajdowania pierwiastków w tak wąskim zakresie.

„Nasze Słońce ma stosunkowo wysoki poziom fosforu, a biologia Ziemi wymaga niewielkiej, ale zauważalnej jego ilości. Tak więc prawdopodobne jest, że na planetach skalistych, które krążą wokół swoich gwiazd macierzystych z mniejszą ilością fosforu będzie on niedostępny dla potencjalnego życia. Dlatego też wzywamy społeczność badającą obfitość gwiazd do uczynienia obserwacji fosforu priorytetem w przyszłych badaniach” – dodaje Hinkel.

Idąc dalej, odkrycia te mogą zrewolucjonizować wybór gwiazd docelowych do przyszłych badań i ustalić rolę, jaką pierwiastki odgrywają w wykrywaniu egzoplanet a także ich formowaniu się i przystosowaniu do zamieszkania.

Opracowanie:
Agnieszka Nowak

Źródło:
Southwest Research Institute

Vega


Załączniki:
Stellar_Phosphorus_-46301.jpg
Stellar_Phosphorus_-46301.jpg [ 224.78 KiB | Przeglądany 321 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Wyświetl posty nie starsze niż:  Sortuj wg  
Nowy temat Odpowiedz w temacie  [ Posty: 727 ]  Przejdź na stronę Poprzednia  1 ... 33, 34, 35, 36, 37  Następna

Czas środkowoeuropejski letni


Kto jest online

Użytkownicy przeglądający to forum: Obecnie na forum nie ma żadnego zarejestrowanego użytkownika i 2 gości


Nie możesz tworzyć nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz dodawać załączników

Szukaj:
Przejdź do:  
Technologię dostarcza phpBB® Forum Software © phpBB Group