Dzisiaj jest 18 listopada 2019, 16:48

Czas środkowoeuropejski letni




Nowy temat Odpowiedz w temacie  [ Posty: 532 ]  Przejdź na stronę Poprzednia  1 ... 22, 23, 24, 25, 26, 27  Następna
Autor Wiadomość
Post: 12 sierpnia 2019, 19:04 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
ALMA zagląda w „strefie oddziaływań” czarnej dziury

To, co dzieje się w czarnej dziurze, pozostaje w czarnej dziurze, jednak to, co ma miejsce w „strefie oddziaływań” czarnej dziury – najbardziej wewnętrznym obszarze galaktyki, w którym siła grawitacji czarnej dziury jest dominującą siłą – jest bardzo interesujące dla astronomów i może pomóc określić masę czarnej dziury oraz jej wpływ na sąsiedztwo galaktyczne.

Nowe badania wykonane za pomocą ALMA dostarczają niespotykanego widoku z bliska na rotujący dysk zimnego gazu międzygwiezdnego krążącego wokół supermasywnej czarnej dziury. Ów dysk znajduje się w centrum NGC 3258, masywnej galaktyki eliptycznej oddalonej o ok. 100 mln lat świetlnych od Ziemi. Na podstawie tych obserwacji zespół kierowany przez astronomów z Texas A&M University i University of California Irvine, określił, że ta czarna dziura ma masę 2,25 mld mas Słońca i jest najmasywniejszą czarną dziurą zmierzoną jak dotąd za pomocą ALMA.

Chociaż supermasywne czarne dziury mogą mieć masy od milionów do miliardów słońc, stanowią zaledwie niewielki ułamek masy całej galaktyki. Oddzielenie wpływu grawitacji czarnej dziury od gwiazd, gazu międzygwiezdnego i ciemnej materii w centrum galaktyki jest trudne i wymaga bardzo czułych obserwacji w fenomenalnie małych skałach.

„Obserwowanie ruchu orbitalnego materii znajdującej się możliwie najbliżej czarnej dziury jest niezwykle ważne do dokładnego określenia masy czarnej dziury. Nowe obserwacje NGC 3258 pokazują niesamowitą moc ALMA w zakresie mapowania rotacji gazowych dysków wokół supermasywnych czarnych dziur” – powiedział Benjamin Boizelle z Texas A&M University i główny autor badania opublikowanego w Astrophysical Journal.

Astronomowie wykorzystują różne metody do pomiaru mas czarnej dziury. W olbrzymich galaktykach eliptycznych większość pomiarów pochodzi z obserwacji ruchu orbitalnego gwiazd wokół czarnej dziury, wykonanego w zakresie widzialnym lub podczerwonym. Inna technika wykorzystuje naturalnie występujące masery wody w obłokach gazowych krążących wokół czarnych dziur, co zapewnia lepszą precyzję. Niestety masery te są rzadkością i są związane prawie wyłącznie z galaktykami spiralnymi o mniejszych czarnych dziurach.

W ciągu minionych kilku lat ALMA zaczęła korzystać z nowej metody badania czarnych dziur w olbrzymich galaktykach eliptycznych. Około 10% galaktyk eliptycznych posiada regularnie wirujące dyski zimnego, gęstego gazu. Dyski te posiadają gazowy tlenek węgla (CO), który można obserwować za pomocą radioteleskopów na falach milimetrowych.

Wykorzystując przesunięcie dopplerowskie emisji cząsteczek CO, astronomowie mogą mierzyć prędkości orbitujących obłoków gazu, a ALMA umożliwia obserwacje samych jąder galaktycznych, w których te prędkości są największe.

„Nasz zespół badał pobliskie galaktyki eliptyczne przy pomocy ALMA od kilku lat, poszukując i badając dyski gazu cząsteczkowego wirującego wokół olbrzymich czarnych dziur. NGC 3258 jest najlepszym celem, jaki znaleźliśmy, ponieważ jesteśmy w stanie śledzić rotację dysku bliżej czarnej dziury niż w jakiejkolwiek innej galaktyce” – powiedział Aaron Barth z UC Irvine, współautor opracowania.

Tak samo jak Ziemia okrąża Słońce szybciej niż Pluton, ponieważ doświadcza silniejszej grawitacji Słońca, tak wewnętrzne obszary dysku NGC 3258 krążą szybciej niż zewnętrzne części ze względu na grawitację czarnej dziury. Dane ALMA pokazują, że prędkość rotacji dysku wzrasta od 1 mln km/h na jego zewnętrznej krawędzi, ok. 500 lat świetlnych od czarnej dziury, do ponad 3 mln km/h w pobliżu centrum dysku, w odległości zaledwie 65 lat świetlnych od czarnej dziury.

Naukowcy określili masę czarnej dziury, modelując rotację dysku, uwzględniając dodatkową masę gwiazd w centralnym obszarze galaktyki i inne szczegóły, takie jak lekko zakrzywiony kształt dysku gazowego. Jasna detekcja szybkiej rotacji umożliwiła naukowcom określenie masy czarnej dziury z dokładnością lepszą niż 1%, chociaż szacują dodatkową systematyczną 12% niepewność pomiaru, ponieważ odległość do NGC 3258 nie jest dokładnie znana. Nawet uwzględniając niepewną odległość, jest to jeden z najbardziej precyzyjnych pomiarów masy czarnej dziury poza Drogą Mleczną.

Opracowanie:
Agnieszka Nowak

Źródło:
NRAO

Vega


Załączniki:
nrao19cb04_scienceimage_V3_04012019-1024x1024.png
nrao19cb04_scienceimage_V3_04012019-1024x1024.png [ 1.81 MiB | Przeglądany 918 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 14 sierpnia 2019, 18:44 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Przełomowa obserwacja dokonana na Maunakea

Istniejące obserwatoria astronomiczne na Maunakea wróciły do pracy w miniony weekend i nie trzeba było długo czekać na znaczące wyniki, nie tylko naukowe ale także zapewniające bezpieczeństwo Ziemi.

Obserwacje planetoidy bliskiej Ziemi – 2006 QV89 – wykonane 11 sierpnia przy pomocy Canada-France-Hawaii Telescope (CFHT) wykluczyły wszelkie potencjalne przyszłe zagrożenie Ziemi przez tę planetoidę na najbliższe stulecia.

2006 QV89 została odkryta 29 sierpnia 2006 r. za pomocą teleskopu w Arizonie, a obserwowanie jej było możliwe jedynie do 8 września 2006 roku, kiedy to planetoida stała się niewidoczna dla teleskopów z Ziemi. Orbita wyznaczona na podstawie tych ograniczonych obserwacji obarczona była znaczną niepewnością i nie można było wykluczyć małego prawdopodobieństwa, że obiekt uderzy w Ziemię już w 2019 roku. W ubiegłym miesiącu obserwacje Bardzo Dużym Teleskopem (VLT) ESO nie wykazały obecności planetoidy w miejscu, w którym powinna się znajdować, jeżeli byłaby na kursie kolizyjnym z Ziemią we wrześniu b.r. Wykluczyło to zderzenie w 2019 r. ale impakt w 2020 r. pozostawał możliwy, razem z blisko tuzinem w ciągu następnych stu lat, z czego osiem w ciągu nadchodzącej dekady.

To lato było pierwszą wyraźną okazją do odzyskania planetoidy od czasu jej odkrycia, ale niepewność co do jej pozycji na niebie rozłożyła się na około 30 stopni w połowie lipca, a nawet się powiększyła, gdy planetoida zbliżyła się do Ziemi. „Dzięki temu użycie teleskopu z kamerą szerokokątną było absolutnie niezbędne” – zauważył David Tholen, astronom w Instytucie Astronomii Uniwersytetu Hawajskiego, który doprowadził do odzyskania 2006 QV89 w 2006 roku. Tylko ułamek tego regionu zobrazowano przez CFHT 14 lipca, ale działania przy istniejących teleskopach zostały zawieszone do 16 lipca z powodu protestu na Maunakea.

„Znaleźliśmy co najmniej tuzin planetoid wśród danych z 14 lipca, które znalazły się blisko regionu, w którym mogła być 2006 QV89, ale zawieszenie działalności uniemożliwiło nam potwierdzenie, który z tych obiektów, jeżeli w ogóle, był 2006 QV89” – powiedział Tholen.

Minor Planet Center ogłosiło powrót do pracy w niedzielę a służby monitorowania zderzeń w JPL i University of Pisa/SpaceDys we Włoszech natychmiast zaczęły zbierać dane w celu zaktualizowania prognozy zderzeń. Chwilę później Davide Farnocchia z Centrum Near-Earth Object Studies JPL w Pasadenie poinformował, że wszystkie scenariusze zderzeń na następne stulecie zostały wyeliminowane.

Podobnie jak meteorolodzy wykorzystują pogodowe zdjęcia satelitarne do śledzenia huraganów aby ustalić, czy stanowią one zagrożenie dla ludzi, astronomowie używają teleskopów do śledzenia planetoid w pobliżu Ziemi, by ustalić, czy zagrażają zderzeniem z naszą planetą. „Inna planetoida, 2019 NX5, oddaliła się od nas, gdy teleskopy Maunakea były nieczynne, co jest niefortunne. Ulżyło nam, gdy udało nam się uchwycić 2006 QV89 przed zamknięciem się okna obserwacyjnego. Odczuwamy ulgę tym bardziej, że nie zagraża ona Ziemi” – mówi Tholen.

Opracowanie:
Agnieszka Nowak

Źródło:
University of Hawaiʻi

Vega


Załączniki:
manoa-ifa-cfht.jpg
manoa-ifa-cfht.jpg [ 32.86 KiB | Przeglądany 912 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 15 sierpnia 2019, 16:13 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Fluorescencyjna poświata może ukazać ukryte życie w kosmosie

Astronomowie poszukujący życia na odległych planetach mogą chcieć zabłysnąć. Ostre promieniowanie ultrafioletowe pochodzące od czerwonych słońc, kiedyś uważane za niszczące życie na powierzchni planet, może pomóc odkryć ukryte biosfery, gdy te błyszczą. Ta podobna do neonu poświata to wzbudzony przez gwiazdy blask zwany biofluorescencją, która może zmienić odległe egzoplanety w kosmiczne afisze.

„Jest to całkowicie nowatorski sposób poszukiwania życia we Wszechświecie. Wyobraź sobie obcy świat delikatnie błyszczący w potężnym teleskopie” – powiedział główny autor pracy Jack O’Malley-James, badacz z Instytutu Carla Sagana.

„Na Ziemi jest kilka podwodnych koralowców, które wykorzystują biofluorescencję, aby przekształcać szkodliwe promieniowanie UV Słońca w nieszkodliwe światło widzialne, tworząc piękny blask. Być może takie formy życia mogą istnieć również na innych światach, pozostawiając nam wyraźny znak, by je dostrzec” – powiedziała współautorka pracy Lisa Kaltenegger z Instytutu Carla Sagana.

Astronomowie ogólnie zgadzają się, że duża część egzoplanet znajduje się w strefie zdatnej do zamieszkania gwiazd typu M, najpowszechniejszego rodzaju gwiazd we Wszechświecie. Gwiazdy typu M często rozbłyskają, a kiedy te ultrafioletowe rozbłyski uderzają w ich planety, biofluorescencja może pomalować te światy w piękne kolory. Następna generacja teleskopów naziemnych lub kosmicznych może wykryć świecące egzoplanety, jeżeli takowe istnieją w kosmosie.

Astronomowie wykorzystali charakterystykę emisji typowych koralowych pigmentów fluorescencyjnych z Ziemi, aby stworzyć widma modelowe i kolory dla planet krążących wokół aktywnych gwiazd typu M w celu naśladowania siły sygnału i możliwości wykrycia życia.

W 2016 roku astronomowie znaleźli skalistą egzoplanetę nazwaną Proxima b – potencjalnie zdatny do zamieszkania świat krążący wokół aktywnej gwiazdy typu M Proxima Centauri, najbliższej Ziemi gwiazdy poza Słońcem – która mogłaby zostać zakwalifikowana jako cel. Proxima b jest także jednym z najbardziej optymalnych miejsc docelowych podróży kosmicznych w odległej przyszłości.

Opracowanie:
Agnieszka Nowak

Źródło:
Instytut Carla Sagana

Vega


Załączniki:
pttu698164.jpg
pttu698164.jpg [ 23.47 KiB | Przeglądany 911 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 16 sierpnia 2019, 12:41 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Astronomowie obserwują ewolucję starej gwiazdy w czasie rzeczywistym

Międzynarodowy zespół astronomów z sukcesem wykrył oznaki starzenia się czerwonego nadolbrzyma T Ursae Minoris. Gwiazda w konstelacji Małej Niedźwiedzicy przechodzi obecnie atomową „czkawkę” i wkrótce zakończy swoje trwające 1,2 mld lat życie.

Wyobraź sobie, że jesteś muchą i chcesz dowiedzieć się, jak starzeją się ludzie. Nie masz czasu na to, aby wybrać tylko jeden okaz i czekać: musisz pracować z tym, co widzisz teraz i starać się to jakoś zrozumieć. Jest to podstawowy problem zrozumienia gwiezdnej ewolucji za życia człowieka.

Życie gwiazd przebiega bardzo powoli i przez większość czasu nie jesteśmy w stanie dostrzec przemijania tych obiektów. Dobrze znanym wyjątkiem od tej reguły jest eksplozja supernowej, ale zdecydowana większość gwiazd nie doświadcza tej fazy. Gwiazdy podobne do Słońca kończą swoje życie znacznie ciszej: po kilku miliardach lat zmieniają się w czerwone nadolbrzymy, a następnie w mgławice planetarne, pozostawiając po sobie jedynie małego białego karła.

Astronomowie zgromadzili dowody tego biegu zdarzeń, obserwując miliony gwiazd o różnym wieku i masie oraz obliczając „typowe” zachowanie za pomocą modeli gwiazdowych. Jednak trudno jest znaleźć bezpośredni dowód na to, że jakaś gwiazda podąża tą konkretną ścieżką.

Naukowcom z Obserwatorium Konkoly Węgierskiej Akademii Nauk, dr László Molnár i dr László Kiss oraz ich współpracownicy dr Meridith Joyce z Australian National University, teraz udało się odkryć bezpośredni dowód tej ewolucji pod koniec życia mniejszych gwiazd.

W ciągu ostatnich kilku milionów lat, podczas przejścia gwiazdy z fazy czerwonego olbrzyma do białego karła, produkcja energii w gwieździe staje się niestabilna. Podczas tej fazy fuzja jądrowa rozchodzi się głęboko wewnątrz, powodując cieplną „czkawkę” (impulsy). Impulsy te wywołują drastyczne, gwałtowne zmiany wielkości i jasności gwiazdy – dostrzegane na przestrzeni wieków. Jest zatem możliwe, że cieplny impuls zostanie zauważony w ciągu ludzkiego życia – jeżeli wiemy, gdzie szukać jego oznak.

Identyfikacji pomaga fakt, że stare gwiazdy są zarazem gwiazdami zmiennymi. Fale dźwiękowe powodują, że okresowo się rozszerzają i kurczą, tworząc pulsacje w rocznych cyklach. Te powolne, ale bardzo rzucające się w oczy zmiany blasku wielu gwiazd, w tym T UMi, od ponad stu lat są obserwowane przez zawodowych astronomów oraz amatorów. Pomimo podobnych okresów, pulsowanie i impulsy cieplne są dwoma odrębnymi zjawiskami, a my możemy wykorzystać pierwsze z nich do poszukiwania znaków ostrzegawczych drugiego: gdy gwiazda kurczy się podczas pulsowania, fale dźwiękowe szybciej docierają do granic, skracając roczne okresy pulsacji.

T UMi nie była szczególną gwiazdą zmienną aż do lat ‘80, kiedy jej okres pulsacji zaczął się skracać. Teoretycznie puls cieplny był przyczyną tej bezprecedensowo szybkiej zmiany zaobserwowanej przez węgierskich astronomów na początku roku 2000, ale modele ewolucji gwiazd do niedawna nie były wystarczająco dokładne, aby dopasować obserwacje do teorii.

Węgierscy naukowcy od dawna zamierzali ponownie spojrzeć na T UMi, kiedy udostępniono lepsze narzędzia i więcej danych. Jak wyjaśnił dr Kiss: „Dzisiaj, w drugiej dekadzie XXI wieku, możemy modelować struktury wewnętrzne, ewolucję i oscylacje gwiazd z niespotykaną szczegółowością i dokładnością dzięki ogromnemu rozwojowi w astrofizyce liczbowej. Teoretyczne zrozumienie T Ursae Minoris stało się realną możliwością w ciągu ostatnich 4-5 lat.”

Ich cierpliwość się opłaciła, gdyż dane zebrane przez światową sieć obserwatorów gwiazd zmiennych AAVSO (American Association of Variable Star Observers) w ostatniej dekadzie okazały się kluczowe: pokazali, że w gwieździe pojawił się drugi tryb pulsacji. Te dwie wyraźne fale dźwiękowe „rozstrajają się”, gdy gwiazda się kurczy, umożliwiając określenie właściwości gwiazdy z dużo większą dokładnością, niż kiedykolwiek wcześniej.

Szczegółowe modelowanie fizyczne gwiazdy zostało przeprowadzone przez dr Meridith Joyce z Australian National University w Canberra w Australii. Dzięki współpracy astronomowie odtworzyli zachowanie T UMi z wykorzystaniem najnowocześniejszych kodów ewolucji i pulsacji gwiazd.

Ostateczne obliczenia ukazały bardzo mocne dowody, że T UMi wchodzi w impuls cieplny, a dodatkowo pokazały, że gwiazda narodziła się 1,2 mld lat temu mając masę około dwukrotnie większą, niż słoneczna. Jest to najbardziej precyzyjna ocena masy i wieku dla tego typu starej, pojedynczej gwiazdy, jaką kiedykolwiek osiągnięto.

Modele ukazały wgląd nie tylko w przeszłość gwiazdy, ale także w jej przyszłość: astronomowie doszli do wniosku, że ta faza kurczenia się potrwa łącznie 80-100 lat, co oznacza, że będziemy w stanie zobaczyć, jak gwiazda rozszerza się w ciągu kolejnych 40-60 lat. Sprawdzanie tej teorii będzie bardzo proste: potrzebujemy tylko przyszłych pokoleń amatorów astronomii, aby nadal obserwować zmiany blasku T UMi.

Patrząc dalej w czasie, modele sugerują także, że gwiazda doświadcza jednego z ostatnich cieplnych pulsów, a zatem może wejść w fazę białego karła w ciągu dziesiątek do setek tysięcy lat. „To otrzeźwiająca myśl, że nawet ‘szybkie’ zdarzenia, takie jak impulsy cieplne w gwieździe, wciąż są mierzone w dekadach. Potrzeba całej kariery naukowej, aby ostatecznie udowodnić lub obalić tego typu prognozy. Niemniej jednak planujemy mieć oko na T UMi w dającej się przewidzieć przyszłości” – podsumowuje dr Molnár.

Zapewni to jeden z najbardziej przełomowych i bezpośrednich do tej pory testów naszych modeli ewolucji gwiazd, ale bezpośrednia obserwacja impulsów cieplnych ma również szersze implikacje. Impulsy cieplne wzbogacają cały Wszechświat. Kilka pierwiastków, w tym węgiel, azot, cyna i ołów, nie są wytwarzane przez supernowe, ale raczej we wnętrzach starych gwiazd, takich jak T UMi.

Pierwiastki te są w stanie dotrzeć do powierzchni gwiazdy i dostać się do otaczającego je ośrodka międzygwiezdnego wywołane przez mieszanie podczas pulsacji. Stamtąd wiatry gwiazdowe wypychają je do galaktyki w postaci drobinek pyłu. Te ziarna pyłu są budulcem kolejnych generacji gwiazd, umożliwiając formowanie się wokół nich planet a być może nawet życia opartego na węglu.

Opracowanie:
Agnieszka Nowak

Źródło:
AAVSO

Vega


Załączniki:
potw1227a.jpg
potw1227a.jpg [ 298.47 KiB | Przeglądany 910 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 17 sierpnia 2019, 15:51 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Całkowita anihilacja supermasywnej gwiazdy

Zespół naukowców z CfA ogłosił odkrycie najbardziej masywnej gwiazdy, jaka kiedykolwiek została zniszczona przez wybuch supernowej, rzucając tym samym wyzwanie znanym modelom śmierci masywnych gwiazd i zapewniając spojrzenie na śmierć pierwszych gwiazd we Wszechświecie.

Po raz pierwszy zaobserwowana w listopadzie 2016 roku przez satelitę Gaia, przez trzy lata intensywnie badana, supernowa SN2016iet ukazała właściwości – niezwykle długi okres trwania i dużą energię, niezwykłe chemiczne odciski palców oraz środowisko ubogie w metale – dla których w istniejącej astronomicznej literaturze nie ma analogii.

Zespół użył różnych teleskopów, w tym MMT Observatory i Magellan Telescopes, aby wykazać, że SN2016iet różni się od tysięcy supernowych obserwowanych przez naukowców od dziesięcioleci.

„Wszystko w tej supernowej wygląda inaczej – zmiana jasności w czasie, jej widmo, galaktyka, w której się znajduje a nawet miejsce, które zajmuje w swojej galaktyce. Czasami widzimy supernowe, które są niezwykłe pod jednym względem, ale poza tym są normalne. Ta jest wyjątkowa pod każdym możliwym względem” – powiedział dr Edo Berger, profesor astronomii na Uniwersytecie Harvarda i autor publikacji.

Obserwacje i analizy pokazują, że SN2016iet rozpoczęła swoje istnienie jako niesamowicie masywna gwiazda 200 razy masywniejsza od Słońca, która w tajemniczy sposób ukształtowała się w odizolowaniu około 54 000 lat świetlnych od centrum swojej galaktyki karłowatej. Gwiazda straciła około 85% swojej masy podczas krótkiego życia trwającego zaledwie kilka mln lat, aż do ostatecznej eksplozji i zapaści. Zderzenie gruzu z eksplozji z materią rozrzuconą w ostatniej dekadzie przed wybuchem doprowadziło do niezwykłego wyglądu SN2016iet, dając naukowcom pierwszy mocny przypadek supernowej powstającej z powodu niestabilności kreacji par.

„Idea supernowych powstających z powodu niestabilności kreacji par istnieje od dziesięcioleci. Ale w końcu mamy pierwszy obserwacyjny przykład, który stawia umierającą gwiazdę w odpowiednim reżimie masy, z właściwym zachowaniem oraz w ubogiej w metale galaktyce karłowatej co jest dla nas niesamowitym krokiem naprzód. SN2016iet reprezentuje sposób, w jaki najbardziej masywne gwiazdy we Wszechświecie, włącznie z pierwszymi gwiazdami, umierają” – powiedział Berger.

Zespół będzie nadal badał i obserwował SN2016iet, szukając dodatkowych wskazówek, jak powstała i w jaki sposób będzie ewoluować. „Większość supernowych znika i staje się niewidzialna wobec blasku swoich galaktyk w ciągu kilku miesięcy. Ale ponieważ SN2016iet jest tak jasna i tak oddalona od centrum, możemy ją badać przez wiele lat. Te obserwacje są już w toku i nie możemy się doczekać, aby zobaczyć, jakie inne niespodzianki ma dla nas ta supernowa” – powiedział Sebastian Gomez, absolwent Uniwersytetu Harvarda i główny autor artykułu.

Opracowanie:
Agnieszka Nowak

Źródło:
CfA

Vega


Załączniki:
base.jpg
base.jpg [ 1.57 MiB | Przeglądany 908 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 18 sierpnia 2019, 13:05 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Ile planet typu ziemskiego krąży wokół gwiazd podobnych do Słońca?

Nowe badanie dostarcza najdokładniejszego oszacowania częstotliwości, w jakiej planety podobne do Ziemi pod względem wielkości i odległości od swojej macierzystej gwiazdy występują wokół gwiazd podobnych do naszego Słońca. Znajomość częstości występowania tych potencjalnie nadających się do zamieszkania planet będzie istotna przy projektowaniu przyszłych misji astronomicznych mających na celu scharakteryzowania pobliskich planet skalistych okrążających gwiazdy podobne do Słońca, które mogłyby podtrzymywać życie.

Kosmiczny teleskop Keplera, zanim został wycofany z użycia, zaobserwował setki tysięcy gwiazd i zidentyfikował planety poza Układem Słonecznym – egzoplanety – dokumentując zdarzenia tranzytów. Do tranzytu dochodzi, gdy orbita planety przechodzi między gwiazdą a obserwatorem, blokując część światła tej gwiazdy, przez co wydaje się, że ta przygasa. Mierząc wielkość pociemnienia i czas między tranzytami oraz wykorzystując informacje o właściwościach gwiazdy, astronomowie charakteryzują rozmiar planety i jej odległość od gwiazdy macierzystej.

„Kepler odkrył planety o różnych rozmiarach, składzie i orbitach. Chcemy wykorzystać te odkrycia, aby lepiej zrozumieć proces powstawania planet i planować przyszłe misje kosmiczne poszukujące planet nadających się do zamieszkania. Jednak samo liczenie egzoplanet o danym rozmiarze czy odległości orbitalnej jest mylące, ponieważ o wiele trudniej jest znaleźć małe planety z dala od ich gwiazd niż duże planety w pobliżu tych gwiazd” – powiedział Eric B. Ford, profesor astronomii i astrofizyki w Penn State i jeden z liderów zespołu badawczego.

Aby pokonać tę przeszkodę, naukowcy opracowali nową metodę wnioskowania o częstotliwości występowania planet w szerokim zakresie rozmiarów i odległości orbitalnych. Nowy model symuluje „wszechświaty” gwiazd i planet, a następnie „obserwuje” te symulowane wszechświaty, aby określić, ile planet odkryłby Kepler w każdym „wszechświecie”.

Wyniki tych badań są szczególnie istotne w planowaniu przyszłych misji kosmicznych mających na celu scharakteryzowanie planet potencjalnie podobnych do Ziemi. Chociaż misja Keplera odkryła tysiące małych planet, większość z nich jest tak daleko, że astronomom trudno jest poznać szczegóły dotyczące ich składu i atmosfery.

„Naukowcy są szczególnie zainteresowani poszukiwaniem biomarkerów – cząsteczek wskazujących na życie – w atmosferach planet o zbliżonej wielkości do Ziemi, które krążą w ekosferze gwiazdy podobnej do Słońca. Ekosfera to zakres odległości orbitalnych, gdzie planety na swojej powierzchni mogą utrzymywać wodę w stanie ciekłym. Poszukiwanie życia na planetach wielkości Ziemi w strefie życia gwiazd podobnych do Słońca będzie wymagało nowej dużej misji” – powiedział Ford.

Naukowcy twierdzą, że wielkość tej misji będzie zależała od obfitości planet wielkości Ziemi. NASA i National Academies of Science badają obecnie koncepcje misji, które różnią się znacznie pod względem wielkości i możliwości. Jeżeli planety wielkości Ziemi są rzadkością, to najbliższe planety podobne do Ziemi znajdują się dalej i wymagana będzie wielka, ambitna misja do znalezienia dowodów życia na planetach potencjalnie podobnych do Ziemi. Z drugiej strony jeżeli planety podobne Ziemi są powszechne, będą tam egzoplanety rozmiarów Ziemi okrążające gwiazdy po bliskiej orbicie, i stosunkowo małe obserwatorium będzie w stanie zbadać ich atmosfery.

„Podczas, gdy większość gwiazd, które obserwował Kepler, znajduje się zazwyczaj tysiące lat świetlnych od Słońca, Kepler zaobserwował wystarczająco dużą próbkę gwiazd, abyśmy mogli przeprowadzić rygorystyczną analizę statystyczną w celu oszacowania częstotliwości planet wielkości Ziemi w strefie zdatnej do zamieszkania pobliskich gwiazd podobnych do Słońca” – powiedział Danley Hsu, pierwszy autor artykułu.

Na podstawie swoich symulacji naukowcy szacują, że planety bardzo zbliżone wielkościowo do Ziemi, od ¾ do 1,5 rozmiaru naszej planety, z okresem orbitalnym od 237 do 500 dni, występują w przybliżeniu przy 1/4 gwiazd. Co ważne, ich model określa niepewność w tym oszacowaniu. Zalecają, aby przyszłe misje związane z poszukiwaniem planet obejmowały rzeczywistą częstotliwość od ok. jednej planety na każde 33 gwiazdy, do tak wysokiej, jak jedna planeta na dwie gwiazdy.

Opracowanie:
Agnieszka Nowak

Źródło:
Penn State University

Vega


Załączniki:
Ford8-2019 Kepler Oil Painting.jpg
Ford8-2019 Kepler Oil Painting.jpg [ 143.12 KiB | Przeglądany 905 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 19 sierpnia 2019, 17:37 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Pozostałości planet przetrwały wystarczająco długo, aby "dostroić się" do fal radiowych

Sygnały pochodzące głównie od zniszczonych planet mogą być usłyszane miliony lat później na Ziemi, dostarczając ważnych informacji na temat wieku układów planetarnych. W nowym badaniu naukowcy wykorzystali modele statystyczne do ustalenia najlepszych kandydujących układów gwiazdowych do rozpoczęcia poszukiwań pozostałości takich planet.

Opublikowane w Monthly Notices of the Royal Astronomical Society badanie ocenia, w jakim stopniu planety mogą przetrwać, gdy okrążają białe karły. Gwiazdy te są na końcu cyklu życia i spaliły już całe swoje paliwo oraz zrzuciły swoje warstwy zewnętrzne, niszcząc pobliskie obiekty i usuwając zewnętrzne warstwy z planet. Naukowcy ustalili, że jądra, które pozostały z tych planet mogą przetrwać wystarczająco długo, aby można je było wykrywać z Ziemi.

Pierwsza potwierdzona egzoplaneta została odkryta w latach ‘90 przez Aleksandra Wolszczana, profesora astronomii i astrofizyki na Penn State University, przy użyciu metody wykrywania fal radiowych emitowanych z gwiazdy. Na podstawie wyników obecnych badań naukowcy planują obserwować białe karły na podobnej częstotliwości spektrum pola elektromagnetycznego w nadziei na znalezienie resztek planety.

Pole magnetyczne między białym karłem a krążącym wokół niego jądrem planetarnym może tworzyć obwód emitujący promieniowanie w postaci fal radiowych, które można wykryć za pomocą radioteleskopów na Ziemi.

Jednak naukowcy musieli ustalić, jak długo te jądra mogą przetrwać po usunięciu zewnętrznych warstw planety. Ich modelowanie pokazało, że w wielu przypadkach jądra planet mogą przetrwać ponad 100 mln lat a nawet 1 mld lat.

„Wykorzystaliśmy wyniki tej pracy jako wytyczne dla projektów radiowych poszukiwań jąder planetarnych krążących wokół białych karłów. Biorąc pod uwagę istniejące dowody obecności szczątków planetarnych wokół wielu z nich, uważamy, że nasze szanse na ekscytujące odkrycia są całkiem spore” – mówi Wolszczan.

„Jądro zbyt blisko białego karła zostanie zniszczone przez siły pływowe, a jądro znajdujące się za daleko nie będzie wykrywalne. Ponadto, jeżeli pole magnetyczne byłoby zbyt silne, pchnęło by jądro do białego karła, niszcząc je. Dlatego powinniśmy szukać planet krążących wokół białych karłów o słabszych polach magnetycznych w odległości między 3 promienie Słońca a odległość Merkury-Słońce” – powiedział Dimitri Veras z Wydziału Fizyki Uniwersytetu Warwick, który kierował badaniami.

„Odkrycie pomogłoby również ujawnić historię tych układów gwiazdowych, ponieważ aby jądro osiągnęło ten etap, zostałoby pozbawione atmosfery i płaszcza w pewnym momencie, a następnie wyrzucone w kierunku białego karła. Takie jądro może również dać okazję do spojrzenia na naszą odległą przyszłość i to, jak ewentualnie będzie ewoluował Układ Słoneczny” – dodał Veras.

Opracowanie:
Agnieszka Nowak

Źródło:
Penn State University

Vega


Załączniki:
17054776-7337887-image-a-17_1565279654461.jpg
17054776-7337887-image-a-17_1565279654461.jpg [ 32.25 KiB | Przeglądany 894 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 21 sierpnia 2019, 18:37 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Skalista egzoplaneta wielkości Ziemi nie ma atmosfery

Astronomowie przeszukali skalistą, podobną do Ziemi egzoplanetę w poszukiwaniu oznak atmosfery – i nie znaleźli jej.

Już wcześniej wykrywano atmosfery na innych planetach, znacznie większych niż nasza własna, w tym na kilku gorących Jowiszach czy pod-Neptunach, z których wszystkie są zbudowane głównie z lodu i gazu. Ale po raz pierwszy naukowcy byli w stanie ustalić, czy planeta rozmiarów Ziemi i typu ziemskiego, poza naszym Układem Słonecznym, ma atmosferę.

Omawiana planeta, LHS 3844b, została odkryta w 2018 roku przez satelitę TESS a jej wielkość oceniono na 1,3 rozmiaru Ziemi. Planeta okrąża swoją gwiazdę w ciągu zaledwie 11 godzin, co czyni ją jedną z najszybciej orbitujących znanych egzoplanet. Sama gwiazda jest chłodnym, małym karłem typu M, który znajduje się zaledwie 49 lat świetlnych od Ziemi.

W artykule opublikowanym w Nature zespół donosi, że LHS 3844b prawdopodobnie nie ma ani gęstej atmosfery podobnej do wenusjańskiej, ani cienkiej, podobnej do ziemskiej. Zamiast tego planeta jest bardziej podobna do Merkurego – płonąca, naga skała. Jeżeli kiedykolwiek istniała atmosfera, to wg naukowców promieniowanie gwiazdy prawdopodobnie ją rozbiło na wczesnym etapie powstawania planety.

Czy jakakolwiek forma życia mogłaby przetrwać na tak jałowym pustkowiu? Daniel Koll, współautor pracy oraz jego koledzy twierdzą, że jest to niezwykle mało prawdopodobne, ponieważ brak atmosfery spowodowałby natychmiastowe ugotowanie się wszelkich organizmów na planecie. Ale to nie znaczy, że inne planety typu ziemskiego także są bez atmosfery.

W 2018 roku LHS 3844b była pierwszym pozasłonecznym światem potwierdzonym przez TESS, satelitę, który monitoruje tysiące najbliższych, najjaśniejszych gwiazd, pod kątem tranzytów – okresowych spadków jasności w świetle gwiazd, które mogłyby sygnalizować planetę przechodzącą przed jej tarczą, chwilowo blokując jej światło.

Laura Kreidberg, główna autorka pracy z CfA i jej zespół oznaczyli LHS 3844b jako idealne laboratorium, ponieważ jej gwiazda jest jasna i znajduje się w pobliżu, a więc źródło, na podstawie którego naukowcy mogliby szczegółowo zbadać planetę. Ponieważ LHS 3844b znajduje się bardzo blisko swojej gwiazdy, a zatem jest niesamowicie gorąca, Kreidberg i Koll uznali, że powinna oddać wystarczającą ilość ciepła, aby odsłonić wskazówki, czy ma atmosferę.

LHS 3844b jest ciągle zwrócona jedną stroną do swojej gwiazdy, tak jak Księżyc do Ziemi. Gdyby istniała atmosfera, cyrkulowała by ciepło na całej planecie, a ciepło emitowane zarówno przez dzienną jak i nocną stronę byłoby mniej więcej takie samo. W przypadku braku atmosfery strona dzienna byłaby znacznie gorętsza niż nocna.

Gdy planeta krąży wokół swojej gwiazdy, obserwator widzi różne jej twarze. Kiedy wyłania się zza swojej gwiazdy, dzienna strona planety jest odsłonięta. Następnie, przechodząc przed gwiazdą, planeta obraca się, aby pokazać swoją nocną stronę, po czym wraca, aby odsłonić swoją dzienną stronę, po czym ponownie przechodzi za gwiazdę.

Naukowcy doszli do wniosku, że gdyby mogli mierzyć ciepło wydzielane przez różne twarze planety w czasie jej orbitowania wokół gwiazdy, mogliby określić różnice temperatur między stroną dzienną i nocną, a ostatecznie, czy planeta ma atmosferę.

Aby przetestować ten pomysł, zespół użył teleskopu Spitzera, instrumentu mierzącego promieniowanie podczerwone lub cieplne, i skierował go w stronę LHS 3844b na czas 100 godzin, przechwytując łącznie około 10 okrążeń planety. Mierzyli ciepło wydzielane przez różne twarze planety na każdym okrążeniu.

Na podstawie tych pomiarów naukowcy obliczyli, że po dziennej stronie panuje ogromna temperatura 1000 K a na nocnej wynosi zaledwie 0 K. Drastyczna różnica temperatur wskazuje, że planeta nie ma gęstej, przypominającej wenusjańską, atmosfery, która równomiernie rozprowadzałaby temperaturę po planecie.

Zespół przeprowadził symulację różnych scenariuszy obejmujących cieńsze atmosfery o różnym składzie, ale odkrył, że żaden z nich nie wytwarzał rozkładu ciepła, który by pasował do ich obserwacji, co wskazuje, że planeta również nie ma cienkiej atmosfery podobnej do ziemskiej.

Był jeden scenariusz, w którym wyjątkowo cienka atmosfera, podobna do marsjańskiej, mogła wytworzyć drastyczną różnicę temperatur na planecie. Zespół odkrył jednak, że jest mało prawdopodobne, aby tak cienka atmosfera pozostała stabilna, ponieważ promieniowanie gwiazdy szybko rozdmuchało by wszelkie śladowe gazy otaczające planetę.

Naukowcy doszli do wniosku, że LHS 3844b jest zasadniczo super gorącą, nagą skałą. Ale jaka to może być skała? W ostatnim kroku zespół starał się określić jej skład, mierząc albedo. Jak wiemy na Ziemi, różne minerały odbijają światło w różnym stopniu – bazalt, który jest czarną, zestaloną lawą, odbija bardzo mało światła, podczas gdy jaśniejsze skały, takie jak granit, zawierające minerały, takie jak kwarc, mają wyższy współczynnik odbicia. Zespół zmierzył stosunek jasności gwiazdy do jasności planety, aby obliczyć współczynnik albedo planety.

Chociaż grupa doszła do wniosku, że na LHS 3844b nie ma atmosfery – a zatem i życia – twierdzą, że może nie być tak samo w przypadku podobnych egzoplanet typu ziemskiego, krążących wokół chłodnych karłów typu M. Mają nadzieję, że zastosują swoją technikę na innych skalistych egzoplanetach, w tych, które krążą dalej od swoich gwiazd i mają większe szanse na zachowanie atmosfery.

„Atmosfery pomagają chronić życie i osłaniać je przed promieniowaniem UV. Byłabym podekscytowana wykryciem atmosfery na planecie, nawet jeśli jest ona trochę za gorąca lub za zimna, ponieważ to by nam powiedziało, że niektóre ziemskie egzoplanety mogą mieć atmosferę i prawdopodobnie gdzieś tam będzie to odpowiednia temperatura, która byłaby w stanie utrzymać płynną wodę” – mówi Kreidberg.

Opracowanie:
Agnieszka Nowak

Źródło:
MIT

Vega


Załączniki:
MIT-No-Atmosphere-01_0.jpg
MIT-No-Atmosphere-01_0.jpg [ 230.52 KiB | Przeglądany 889 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 23 sierpnia 2019, 18:41 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Wykrywanie łączących się galaktyka

Ponad 30 lat temu satelita na podczerwień Infrared Astronomy Satellite odkrył, że Wszechświat zawiera wiele niezwykle jasnych galaktyk, niektóre ponad tysiąc razy jaśniejsze, niż Droga Mleczna, ale które są praktycznie niewidoczne na optycznych długościach fal. Galaktyki te są zasilane przez wybuchy pochodzące od formujących się gwiazd zakopanych głęboko w obłokach gazu i pyłu. Pył pochłania promieniowanie UV, świecąc na długościach fal podczerwonych. W wielu przypadkach nadpobudliwość wywołana była zderzeniem galaktyk, które ułatwiło zapadanie się gazu międzygwiezdnego w nowe gwiazdy.

Kolizje między galaktykami są powszechne. Rzeczywiście, większość galaktyk prawdopodobnie brała udział w jednym lub kilku spotkaniach podczas swojego życia, co czyni te interakcje ważną fazą w ewolucji galaktyk i powstawaniu gwiazd we Wszechświecie. Na przykład Droga Mleczna jest związana grawitacyjnie z galaktyką Andromedy i zbliża się do niej z prędkością ok. 50 km/s; spodziewamy się spotkania za ok. 1 mld lat. We Wszechświecie lokalnym ok. 5% galaktyk jest obecnie połączonych, a połączenia zwykle łatwo można zidentyfikować na podstawie widocznych zniekształceń morfologicznych, jakie wywołują, takich jak ogony pływowe szybujące z dysków galaktycznych.

Nie wszystkie galaktyki świecące w podczerwieni wykazują jednak takie zniekształcenia, a kwestia identyfikacji (i klasyfikacji) połączeń staje się szczególnie problematyczna w badaniach wcześniejszych kosmicznych epok, gdy tempo formowania się gwiazd było znacznie wyższe, niż obecnie, a także gdy tempo łączenia się galaktyk było również wyższe. Ale galaktyki w odległym kosmosie są zbyt oddalone, aby wykryć sygnatury przestrzenne, takie jak ramiona pływowe (przynajmniej przy pomocy obecnych teleskopów). Możliwe jest, że inne procesy poza powstawaniem gwiazd wywołanym przez zderzenie zapalają niektóre z tych jasnych galaktyk, na przykład akrecja supermasywnych czarnych dziur może emitować duże ilości promieniowania UV. Z powodu takich przypadków oszacowania formowania się gwiazd we wczesnym Wszechświecie na podstawie samych pomiarów jasności mogą być niepoprawne.

Lars Hernquist, astronom z CfA jest pionierem w rozwoju komputerowych symulacji łączących się galaktyk. Kilka lat temu wraz z zespołem współpracowników stworzył nową ogromną symulację powstawania i ewolucji galaktyk we Wszechświecie, zwaną Ilustris. W nowym artykule bazującym na symulacjach Ilustris obrazowania łączących się galaktyk, astronomowie przedstawiają sposób, który pomoże zidentyfikować kiedy obrazowane układy się łączą. Stworzyli około miliarda syntetycznych zdjęć z Kosmicznego Teleskopu Hubble’a i Jamesa Webba z symulowanych połączeń, a następnie szukali wspólnych morfologicznych wskaźników łączenia się. Opracowali algorytm, który z powodzeniem zidentyfikował zderzenia na poziomie ok. 70% kompletności aż do wieku, w którym Wszechświat miał zaledwie 2 mld lat. Wyniki algorytmu wskazały, że cechy przestrzenne związane ze zgrubieniami centralnymi były najważniejsze przy wyborze przeszłych połączeń, podczas gdy podwójne jądra i asymetrie były najważniejsze przy wyborze przyszłych połączeń. Nowy algorytm będzie szczególnie cenny w przypadku zastosowania do przyszłych obrazów z JWST bardzo odległych połączeń.

Opracowanie:
Agnieszka Nowak

Źródło:
CfA

Vega


Załączniki:
NGC-2623-Merging-Galaxies-from-Hubble-777x466.jpg
NGC-2623-Merging-Galaxies-from-Hubble-777x466.jpg [ 32.52 KiB | Przeglądany 888 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 26 sierpnia 2019, 12:45 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Hologramy czarnej dziury

Zespół badaczy zaproponował nowatorskie ramy teoretyczne, których eksperyment można by przeprowadzić w laboratorium, w celu lepszego zrozumienia fizyki czarnych dziur. Projekt ten może rzucić światło na podstawowe prawa rządzące kosmosem zarówno na niewyobrażalnie małej, jak i ogromnej skali.

Niedawno świat wstrzymał oddech, gdy opublikowano pierwsze obrazy czarnej dziury wykonane za pomocą Teleskopu Horyzontu Zdarzeń. A ściślej mówiąc, zdjęcia przedstawiające jasny okrąg, zwany pierścieniem Einsteina, stworzony przez światło, które ledwie uciekło od śmiertelnego pojmania przez ogromną grawitację czarnej dziury. Ten pierścień światła był spowodowany faktem, że zgodnie z ogólną teorią względności sama czasoprzestrzeń staje się tak zniekształcona przez masę czarnej dziury, że działa jak ogromna soczewka.

Niestety, nasze rozumienie czarnych dziur pozostaje niekompletne, ponieważ OTW – która jest używana do opisu praw natury w skali gwiazd i galaktyk – nie jest obecnie kompatybilna z mechaniką kwantową, naszą najlepszą teorią dotyczącą działania Wszechświata na bardzo małych skalach. Ponieważ czarne dziury z definicji mają ogromną masę ściśniętą w niewielką przestrzeń, pogodzenie tych szalenie udanych, ale dotąd sprzecznych teorii jest konieczne, aby je zrozumieć.

Jednym z możliwych sposobów rozwiązania tej zagadki jest teoria strun, która utrzymuje, że cała materia składa się z bardzo małych wibrujących strun. Jedna wersja tej teorii przewiduje zgodność pomiędzy prawami fizyki, które postrzegamy w naszych znanych czterech wymiarach (trzy wymiary przestrzeni plus czas), a strunami w przestrzeni w dodatkowym wymiarze. Czasami nazywa się to „dualnością holograficzną”, ponieważ przypomina dwuwymiarową holograficzną płytę, która przechowuje wszystkie informacje o obiekcie 3D.

W nowo opublikowanych badaniach autorzy Koji Hashimoto (Uniwersytet Osaka), Keiju Murata (Uniwersytet Nihon) i Shunichiro Kinoshita (Uniwersytet Chuo) stosują tę koncepcję, aby pokazać, w jaki sposób powierzchnia kuli o dwóch wymiarach może być wykorzystana w stołowym eksperymencie do modelowania czarnej dziury w trzech wymiarach. W tym układzie światło emitujące ze źródła w jednym punkcie kuli jest mierzone w innym, co powinno pokazywać czarną dziurę jeżeli sferyczny materiał pozwala na holografię.

„Holograficzny obraz symulowanej czarnej dziury zaobserwowany w tym eksperymencie na stole, może służyć jako wejście do kwantowej grawitacji” – mówi autor Hashimoto. Naukowcy obliczyli również promień pierścienia Einsteina, który zostałby zaobserwowany, gdyby teoria była poprawna.

„Mamy nadzieję, że ten projekt wskazuje drogę do lepszego zrozumienia tego, jak naprawdę działa nasz Wszechświat na poziomie podstawowym” – mówi autor Keiju Murata.

Opracowanie:
Agnieszka Nowak

Źródło:
niwersytet Osaka

Vega


Załączniki:
20190730_1_fig_1.jpg
20190730_1_fig_1.jpg [ 61.3 KiB | Przeglądany 855 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 28 sierpnia 2019, 20:29 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Odkryto olbrzymią planetę na bardzo wydłużonej orbicie wokół jej gwiazdy

Astronomowie z University of Texas wraz z kolegami z Caltech i innych uczelni odkryli planetę trzykrotnie większą niż Jowisz, która porusza się długą, jajowatą trajektorią wokół swojej gwiazdy. Gdyby w jakiś sposób planeta ta znalazła się w naszym Układzie Słonecznym, jej orbita sięgałaby poza pas planetoid, za orbitę Neptuna. Inne olbrzymie planety na wysoce eliptycznych orbitach zostały znalezione wokół innych gwiazd, ale żaden z tych światów nie znajdował się w tak bardzo zewnętrznych obszarach swoich układów słonecznych, jak ten.

„Planeta ta nie jest podobna do planet w naszym Układzie Słonecznym, ale co więcej, nie jest podobna do żadnej innej odkrytej dotąd egzoplanety” – mówi Sarah Blunt z Caltech, główna autorka badania, które wkrótce zostanie opublikowane w czasopiśmie Astronomical Journal.

„Ta nowa egzoplaneta jest ekstremalna i bardzo interesująca pod wieloma względami. Ma rekordowo długi okres orbitalny wynoszący ponad 50 lat, który jest znacznie dłuższy, niż w przypadku innych planet wykrywanych tą techniką. I krąży wokół gwiazdy na bardzo wydłużonej orbicie o kształcie jajka. Musiało się wydarzyć coś dramatycznego, aby zmienić kształt jej orbity” – mówi współautor Michael Endl z McDonald Observatory.

„Uważamy, że planety zwykle formują się na bardzo kołowych orbitach, które później mogą ulec zmianie w wyniku interakcji z dyskiem protoplanetarnym wraz z innymi planetami, a nawet bliskimi przelotami innych gwiazd. Niektóre bliskie spotkania z inną masywną planetą mogło rzucić ją na jej wydłużoną orbitę wokół gwiazdy” – wyjaśnia.

Planeta została odkryta za pomocą metody pomiaru prędkości radialnej, dzięki której wykrywa się nowe światy, śledząc, jak ich gwiazdy macierzyste „kołyszą się” pod wpływem holownika grawitacyjnego planet. Jednak analizy tych danych zwykle wymagają obserwacji prowadzonych przez cały okres orbitalny planety. W przypadku planet krążących daleko od swoich gwiazd może to być trudne: pełna orbita może potrwać dekady, a nawet stulecia.

McDonald Observatory Planet Search, prowadzony przez Billa Cochrana, jest jedną z niewielu grup obserwujących gwiazdy w skali dziesięcioleci, czasie niezbędnym do wykrywania długich okresów orbitalnych egzoplanet metodą pomiaru prędkości radialnej.

Astronomowie obserwują gwiazdę macierzystą, zwaną HR 5183, od lat 90. XX wieku, ale nie mają danych odpowiadających jednemu pełnemu obiegowi planety, zwanej HR 5183 b. To dlatego, że okrąża swoją gwiazdę mniej więcej co 45 do 100 lat. Zamiast tego zespół znalazł planetę z powodu jej dziwnej orbity.

„Przez prawie 20 lat nasze dane nie wykazały żadnych oznak planetarnego towarzysza wokół tej gwiazdy. A potem zaobserwowaliśmy ‘procę’, która trwała tylko około dwóch lat” – mówi Endl, odnosząc się do zbliżenia się planety do gwiazdy i oddalenia się od niej.

„Gdybyśmy przestali obserwować gwiazdę po 15 latach, stracilibyśmy ją. Zastanawiam się, ile innych gwiazd ma masywne planety na takich orbitach procy a zwykle je gubimy” – mówi Endl.

Nowe odkrycia pokazują, że można zastosować metodę pomiaru prędkości radialnej do wykrywania innych odległych planet bez czekania przez dziesięciolecia. Naukowcy sugerują, że szukanie większej liczby planet, takich jak ta, można wyjaśnić rolę planet olbrzymów w kształtowaniu ich układów planetarnych.

Planety kształtują się z dysków materii pozostałej po formowaniu się gwiazd. Oznacza to, że planety powinny startować z płaskich, kołowych orbit. Aby nowo odkryta planeta znajdowała się na tak ekscentrycznej orbicie, musiała otrzymać grawitacyjne kopnięcie od jakiegoś innego obiektu. Według naukowców najbardziej prawdopodobny scenariusz jest taki, że planeta miała kiedyś sąsiada o podobnej wielkości. Kiedy obie planety zbliżyły się do siebie wystarczająco, ich silne oddziaływanie grawitacyjne wyrzuciło jedną planetę całkowicie z układu, a HR 5183 b została prawie wyrzucona, co spowodowało, że ma tak ekscentryczną orbitę.

Odkrycie to pokazuje, że nasze rozumienie egzoplanet wciąż ewoluuje. Naukowcy nadal znajdują światy, które nie są podobne do niczego w naszym Układzie Słonecznym lub w układach planetarnych, które już odkryliśmy.

„Aby zrozumieć układy planetarne w całej naszej galaktyce, należy znaleźć i zbadać przykłady pełnego zakresu możliwych układów. Podczas gdy statki kosmiczne znalazły tysiące układów, systemy takie jak HR 5183 raczej nie zostały znalezione przez przeszłe lub obecne misje. Nasza naziemna astronomia egzoplanet nie tylko rozszerza i udoskonala wyniki badań misji, ale także poszerza ogólne możliwości wyszukiwania i badania egzoplanet” – mówi Phillip MacQueen, lider technologii i obserwator w McDonald Observatory Planet Search.

Opracowanie:
Agnieszka Nowak

Źródło:
McDonald Observatory

Vega


Załączniki:
21-newlydiscove.jpg
21-newlydiscove.jpg [ 50.76 KiB | Przeglądany 851 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 29 sierpnia 2019, 16:41 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Gaia rozplątuje gwiezdne sznury Drogi Mlecznej

Zgodnie z nowymi badaniami danych pochodzących z Gaia gwiezdne „rodzeństwo” woli trzymać się razem w długotrwałych, podobnych do sznurów grupach, zamiast opuszczać miejsce swoich narodzin młodo, jakby tego oczekiwano.

Badanie rozmieszczenia i historii gwiezdnych mieszkańców naszej galaktyki jest szczególnie trudne, ponieważ wymaga od astronomów określenia wieku gwiazd. Nie jest to wcale trywialne, ponieważ „przeciętne” gwiazdy o podobnej masie, ale w różnym wieku, wyglądają bardzo podobnie.

Aby dowiedzieć się, kiedy gwiazda się uformowała, astronomowie muszą spojrzeć na populacje gwiazd, które prawdopodobnie powstały w tym samym czasie – ale wiedza o tym, które gwiazdy są rodzeństwem, stanowi kolejne wyzwanie, ponieważ gwiazdy niekoniecznie przebywają długo w gwiezdnych żłobkach, w których powstały.

„Aby zidentyfikować, które gwiazdy powstały razem, szukamy gwiazd poruszających się podobnie, ponieważ wszystkie gwiazdy, które powstały w tym samym obłoku lub gromadzie, poruszałyby się w podobny sposób” – mówi Marina Kounkel z Western Washington University w USA i główna autorka nowego badania.

„Wiedzieliśmy o kilku takich ‘współporuszających się” gromadach gwiazd w pobliżu Układu Słonecznego, ale Gaia umożliwiła nam szczegółowe zbadanie Drogi Mlecznej na znacznie większe odległości, ukazując znacznie więcej takich grup.”

Marina wykorzystała dane z drugiego wydania Gai, aby prześledzić strukturę i aktywność gwiazdotwórczą dużego fragmentu przestrzeni otaczającej Układ Słoneczny i zbadać, jak to się zmieniło w czasie. Ta publikacja danych z kwietnia 2018 r. podaje ruchy i pozycje ponad miliarda gwiazd z niespotykaną precyzją.

Analiza danych z Gaia pokazała prawie 2000 niezidentyfikowanych wcześniej gromad i współporuszających się grup gwiazd w odległości do ok. 3000 lat świetlnych od nas – około 750 razy dalej, niż odległość do Proxima Centauri, najbliższej Słońcu gwiazdy. Badanie określiło także wiek setek tysięcy gwiazd, umożliwiając śledzenie gwiezdnych „rodzin” i odkrywanie ich zaskakujących aranżacji.

„Około połowa tych gwiazd znajduje się w długich, podobnych do sznurów układach, które odzwierciedlają cechy obecne w gigantycznych obłokach ich narodzin” – dodaje Marina.

„Ogólnie sądziliśmy, że młode gwiazdy mogły opuścić miejsca swojego urodzenia zaledwie kilka milionów lat po powstaniu, całkowicie tracąc więzi ze swoją pierwotną rodziną – ale wydaje się, że gwiazdy mogą pozostać blisko rodzeństwa nawet przez kilka miliardów lat.”

Wydaje się, że sznury są również zorientowane w określony sposób w odniesieniu do ramion spiralnych naszej galaktyk – coś, co zależy od wieku gwiazd w sznurze. Jest to szczególnie widoczne w przypadku najmłodszych sznurów, zawierających gwiazdy młodsze niż 100 mln lat, które zwykle są ustawione pod kątem prostym do spiralnego ramienia najbliższego naszemu Układowi Słonecznemu.

Astronomowie podejrzewają, że starsze sznury gwiazd musiały być prostopadłe do ramion spiralnych istniejące podczas formowania się tych gwiazd, które zostały przetasowane w ciągu ostatnich miliardów lat.

„Bliskość i orientacja najmłodszych sznurów względem współczesnych ramion spiralnych Drogi Mlecznej pokazuje, że starsze sznury są ważnym ‘skamieniałym zapisem’ spiralnej struktury naszej galaktyki” – mówi współautor Kevin Covey, również z Western Washington University, USA.

„Natura ramion spiralnych jest wciąż przedmiotem dyskusji, a werdykt, czy są to stabilne czy dynamiczne konstrukcje nie został jeszcze ustalony. Badanie tych starszych sznurów pomoże nam zrozumieć, czy ramiona są w większości statyczne, czy też poruszają się, rozpraszają i ponownie formują w ciągu kilkuset milionów lat – mniej więcej tyle, ile zajmuje Słońcu okrążenie kilka razy centrum Galaktyki.”

Opracowanie:
Agnieszka Nowak

Źródło:
ESA

Vega


Załączniki:
Stellar_families_in_Gaia_s_sky.jpg
Stellar_families_in_Gaia_s_sky.jpg [ 1.43 MiB | Przeglądany 844 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 02 września 2019, 16:20 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Wskazówki na wulkaniczną aktywność egzoksiężyca

Skalisty księżyc pozasłoneczny – egzoksiężyc – z bulgoczącą lawą może krążyć wokół planety oddalonej od nas o 550 lat świetlnych. Sugeruje to międzynarodowy zespół badaczy prowadzony przez Uniwersytet w Bernie, bazując na prognozach teoretycznych dopasowanych do obserwacji. „Egzo-Io” wydaje się być ekstremalną wersją jowiszowego księżyca Io.

Io jest najbardziej aktywnym wulkanicznie ciałem w naszym Układzie Słonecznym. Dzisiaj istnieją oznaki, że aktywny księżyc poza Układem Słonecznym, egzo-Io, może być ukryty w układzie planetarnym WASP-49b. „Byłby to niebezpieczny świat wulkaniczny ze stopioną lawową powierzchnią, księżycową wersją bliskich super-Ziem, takich jak 55 Cancri-e, miejsce, w którym Jedi umierają, niebezpiecznie znane Anakinowi Skywalkerowi.” – mówi Apurva Oza, dr hab. w Instytucie Fizyki Uniwersytetu w Bernie i współpracownik NCCR PlanetS. Ale obiekt, który Oza i jego koledzy opisali w swojej pracy, wydaje się być jeszcze bardziej egzotyczny, niż Star Wars: prawdopodobny egzoksiężyc okrążałby gorącego olbrzyma, który z kolei pędziłby wokół swojej gwiazdy macierzystej raz na niecałe 3 dni – scenariusz na świat oddalony o 550 lat świetlnych od nas w konstelacji Zająca, pod jasnym Orionem.

Sód jako dowód poszlakowy

Astronomowie jeszcze nie odkryli skalistego księżyca poza Układem Słonecznym a na podstawie poszlakowych dowodów naukowcy z Berna stwierdzili, że egzo-Io istnieje: wykryto sód w postaci gazowej na WASP-49b na anomalnie dużej wysokości. „Neutralny gaz sodowy jest tak daleko od planety, że jest mało prawdopodobne, żeby emitował go wyłącznie wiatr planetarny” – mówi Oza. Obserwacje Jowisza i Io w naszym Układzie Słonecznym, wraz z obliczeniami utraty masy pokazują, że egzo-Io może być bardzo prawdopodobnym źródłem sodu na WASP-49b. „Sód jest tam, gdzie powinien być” – mówi astrofizyk.

Pływy utrzymują stabilność układu

Już w 2006 roku Bob Johnson z University of Virginia i nieżyjący Patrick Huggins z New York University w USA wykazali, że duże ilości sodu na egzoplanecie mogą wskazywać na ukryty księżyc lub pierścień materii, a 10 lat temu naukowcy z Virginii obliczyli, że tak zwany układ trzech ciał: gwiazda, bliska olbrzymia planeta i księżyc może być stabilny przez miliardy lat.

„Ogromne siły pływowe w takim układzie są kluczem do wszystkiego”, wyjaśnia astrofizyk. Energia uwalniana przez pływy na planetę i jej księżyc utrzymuje stabilną orbitę księżyca, jednocześnie ogrzewając go i czyniąc go aktywnym wulkanicznie. W swojej pracy naukowcy byli w stanie wykazać, że mały skalisty księżyc może wyrzucać więcej sodu i potasu w kosmos dzięki tej ekstremalnej wulkaniczności, niż duża gazowa planeta, szczególnie na dużych wysokościach. „Linie sodowe i potasowe są dla nas, astronomów, kwantowymi skarbami, ponieważ są niezwykle jasne” – mówi Oza.

Trzeba znaleźć więcej wskazówek

Naukowcy porównali swoje obliczenia z tymi obserwacjami i znaleźli pięć układów kandydujących, w których ukryty egzoksiężyc może przetrwać destrukcyjne parowanie termiczne. W przypadku WASP-49b zaobserwowane dane można najlepiej wytłumaczyć istnieniem egzo-Io. Są też inne opcje. Na przykład egzoplaneta może być otoczona pierścieniem zjonizowanego gazu lub procesami nietermicznymi. „Musimy znaleźć więcej wskazówek” – mówi Oza. Dlatego naukowcy opierają się na dalszych obserwacjach za pomocą instrumentów naziemnych i kosmicznych.

„Podczas gdy obecna faza badań zmierza w kierunku poszukiwania światów zdolnych do zamieszkania i biosygnatur, nasza sygnatura jest sygnaturą zniszczenia” – mówi astrofizyk. Kilka z tych światów może zostać zniszczonych w ciągu kilku mln lat z powodu ekstremalnej utraty masy. „Ekscytujące jest to, że możemy monitorować te procesy destrukcyjne w czasie rzeczywistym” – dodaje Oza.

Opracowanie:
Agnieszka Nowak

Źródło:
University of Bern

Vega


Załączniki:
20190829_MedienmitteilungUniBE_ExoMond_Illustration_UniBE_ThibautRoger_1200p.jpg
20190829_MedienmitteilungUniBE_ExoMond_Illustration_UniBE_ThibautRoger_1200p.jpg [ 473.74 KiB | Przeglądany 810 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 04 września 2019, 18:41 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Egzoplanety nie ukryją swoich tajemnic przed innowacyjnym nowym instrumentem

Amerykański zespół badawczy odkrył sekrety nieuchwytnej egzoplanety za pomocą nowego potężnego instrumentu zamontowanego na 8-metrowym teleskopie Gemini North na Maunakea na Hawajach. Odkrycie nie tylko klasyfikuje egzoplanetę wielkości Jowisza w ciasnym układzie podwójnym gwiazd, ale także jednoznacznie pokazuje, po raz pierwszy, wokół której z dwóch gwiazd krąży planeta.

Przełom nastąpił, gdy Steve B. Howell z NASA Ames Research Center i jego zespół zastosował wysokiej rozdzielczości instrument obrazujący o nazwie ‘Alopeke (współczesne hawajskie słowo oznaczające Lisa). Zespół zaobserwował egzoplanetę Kepler-13b, gdy przechodziła przed tarczą jednej z gwiazd w układzie podwójnym Kepler-13AB odległym od nas o 2000 lat świetlnych. Wcześniej prawdziwa natura egzoplanety była tajemnicą.

„Była dezorientacja w związku z Kepler-13b: czy to gwiazda o małej masie, czy gorący świat podobny do Jowisza? Więc opracowaliśmy eksperyment z wykorzystaniem chytrego urządzenia ‘Alopeke. Monitorowaliśmy obie gwiazdy, Kepler A i Kepler B, jednocześnie szukając jakichkolwiek zmian jasności podczas tranzytu planety. Ku naszej radości nie tylko rozwiązaliśmy tajemnicę, ale także otworzyliśmy okno na nową erę badań egzoplanet.” – powiedział Howell.

„Ta podwójna wygrana podniosła znaczenie instrumentów takich jak ‘Alopeke w badaniach egzoplanet. Znakomite zdolności obserwacyjne Gemini Observatory, a także innowacyjny instrument ‘Alopeke umożliwiły to odkrycie w ciągu zaledwie czterech godzin obserwacji” – powiedział Chris Davis z National Science Foundation.

‘Alopeke wykonuje „obrazowanie plamek”, zbierając tysiące 60-milisekundowych ekspozycji co minutę. Po przetworzeniu tak dużej ilości danych końcowe zdjęcia są wolne od niekorzystnych skutków turbulencji atmosferycznych – które mogą powodować rozmycia i zniekształcenia obrazów gwiazd.

„Około połowa wszystkich egzoplanet krąży wokół gwiazdy w układach podwójnych, ale do tej pory nie byliśmy w stanie dokładnie określić, która z gwiazd jest gospodarzem planety” – mówi Howell.

Analiza zespołu ujawniła wyraźny spadek jasności Keplera A, co dowodzi, że planeta krąży wokół jaśniejszej z dwóch gwiazd. Co więcej ‘Alopeke dostarcza jednoznacznych danych na długości fali zarówno czerwonej, jak i niebieskiej, co jest niezwykłą funkcją dla obrazowanych plamek. Porównując dane światła czerwonego i niebieskiego badacze byli zaskoczeni, gdy odkryli, że spadek w świetle niebieskim był około dwa razy głębszy, niż spadek widoczny w świetle czerwonym. Można to wyjaśnić gorącą egzoplanetą o bardzo rozszerzonej atmosferze, która bardziej skutecznie blokuje światło na niebieskiej długości fali. Tak więc te wielokolorowe obserwacje dają kuszące spojrzenie na wygląd tego odległego świata.

Wczesne obserwacje kiedyś wskazały, że obiekt tranzytujący jest gwiazdą o małej masie lub brązowym karłem. Jednak badania Howella i jego zespołu prawie na pewno pokazują, że obiekt ten jest podobną do Jowisza olbrzymią gazową egzoplanetą z „nadmuchaną” atmosferą wywołaną narażeniem na ogromne promieniowanie gwiazdy macierzystej.

‘Alopeke ma identycznego bliźniaka na teleskopie Gemini South w Chile, o nazwie Zorro, co po hiszpańsku oznacza Lis. Podobnie jak ‘Alopeke, Zorro jest zdolny do obrazowania plamek zarówno na niebieskiej jak i czerwonej długości fali. Obecność tych instrumentów na obu półkulach pozwala Obserwatorium Gemini analizować tysiące egzoplanet znanych w wielu układach gwiazdowych.

„Obrazowanie plamek przeżywa renesans dzięki technologii takiej, jak szybkie, niskoszumowe detektory, które stają się łatwiej dostępne. W połączeniu z dużym lustrem głównym Gemini ‘Alopeke ma realny potencjał do dokonywania jeszcze bardziej znaczących odkryć egzoplanet poprzez dodanie innego wymiaru do wyszukiwania” – powiedział członek zespołu Andrew Stephens z teleskopu Gemini North.

Po raz pierwszy zaproponowane przez francuskiego astronoma Antoine Labeyrie w 1970 roku obrazowanie plamek opiera się na idei, że turbulencje atmosferyczne można „zamrozić” przy otrzymywaniu bardzo krótkich ekspozycji. Na tych krótkich ekspozycjach gwiazdy wyglądają jak zbiory małych punktów lub plamek, gdzie każda z tych plamek ma rozmiar optymalnego limitu rozdzielczości teleskopu. Podczas wykonywania wielu ekspozycji i sprytnego podejścia matematycznego plamki te można zrekonstruować, aby stworzyć prawdziwy obraz źródła, usuwając efekty turbulencji atmosferycznych. Rezultatem jest obraz o najwyższej jakości, jaki może wytworzyć teleskop, skutecznie uzyskując kosmiczną rozdzielczość z ziemi – co czyni te instrumenty doskonałymi sondami środowisk pozasłonecznych, w których mogą się znajdować planety.

Odkrycie planet krążących wokół innych gwiazd zmieniło spojrzenie na nasze miejsce we Wszechświecie. Misje kosmiczne, takie jak Kepler/K2 i TESS pokazały, że na niebie jest dwukrotnie więcej planet krążących wokół gwiazd niż gwiazd widocznych nieuzbrojonym okiem; do tej pory łączna liczba odkryć wynosi około 4000.

„Misje te obserwują duże pola widzenia zawierające setki tysięcy gwiazd, więc nie mają wystarczającej rozdzielczości przestrzennej niezbędnej do głębszego badania. Jednym z głównych odkryć badań egzoplanet jest to, że około połowa wszystkich egzoplanet krąży wokół gwiazdy w układzie podwójnym. Zrozumienie tych złożonych systemów wymaga technologii, które mogą przeprowadzić obserwacje czułe na czas i badać najdrobniejsze szczegóły z wyjątkową przejrzystością” – mówi Howell.

„Nasza praca z Kepler-13b stanowi model przyszłych badań egzoplanet w układach wielokrotnych gwiazd. Obserwacje podkreślają zdolność obrazowania w wysokiej rozdzielczości za pomocą potężnych teleskopów, takich jak Gemini, nie tylko do oceny, które gwiazdy z planetami występują w układach podwójnych, ale także do zdecydowanego określenia, którą gwiazdę okrąża planeta” – dodaje Howell.

Opracowanie:
Agnieszka Nowak

Źródło:
Gemini

Vega


Załączniki:
kepler-13ab-art.jpg
kepler-13ab-art.jpg [ 4.21 MiB | Przeglądany 791 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 07 września 2019, 19:04 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Jak wirują dyski wokół młodych protogwiazd

Jak powstają gwiazdy i planety? Naukowcy są teraz o krok bliżej ustalenia warunków powstawania dysków protogwiazdowych. Obserwacje trzech układów we wczesnych stadiach powstawania gwiazd w obłoku Perseusza pokazały, że profil momentu pędu w tych układach jest pomiędzy tym, którego oczekuje się dla ciała stałego a czystą turbulencją. Odkrycia te mogą doprowadzić do bardziej realistycznych warunków początkowych dla symulacji numerycznych tworzenia się dysku.

Główne etapy formowania się gwiazd i planet są dobrze znane: gęsty, obłok międzygwiazdowy zapadnie się pod wpływem własnej grawitacji; tworzy się jądro centralne jak również dysk protogwiazdowy ze względu na zachowanie momentu pędu. W końcu, po około 100 000 lat, gwiazda stanie się wystarczająco gęsta, aby wywołać fuzję jądrową w swoim centrum i zacząć świecić, podczas gdy w dysku zaczną tworzyć się planety. Ale wciąż jest wiele otwartych pytań dotyczących szczegółów tego procesu, np. jaka jest rola momentu pędu w tworzeniu dysku lub w jaki sposób dysk okołogwiazdowy gromadzi większość swojej masy?

Międzynarodowy zespół pod przewodnictwem Max Planck Institute for Extraterrestrial Physics (MPE) zaobserwował obecnie trzy najmłodsze protogwiazdowe źródła w obłoku molekularnym Perseusza. Źródła te znajdują się blisko krawędzi w płaszczyźnie nieba, umożliwiając badanie prędkości rozkładu gęstego obłoku.

„Po raz pierwszy byliśmy w stanie przeanalizować kinematykę gazu wokół trzech dysków okołogwiazdowych we wczesnych stadiach ich powstawania. Wszystkie układy mogą pasować do tego samego modelu, który dał nam pierwszą wskazówkę, że gęste obłoki nie rotują tak samo, jak ciała stałe” – stwierdza Jaime Pineda, który prowadził badanie w MPE. Rotacja ciała stałego jest najprostszym założeniem, które opisuje gaz w gęstym obłoku ze stałym kątem prędkości na dowolnym promieniu. Model najlepiej opisujący wszystkie trzy układy znajduje się pomiędzy tymi oczekiwaniami dla rotacji ciała stałego i czystej turbulencji.

Ponadto, porównując te obserwacje z poprzednimi modelami numerycznymi, jasne jest, że pola magnetyczne odgrywają rolę w tworzeniu tych dysków: „Jeżeli pole magnetyczne jest uwzględnione, daje to pewność, że kolaps nie jest zbyt szybki, a rotacja gazu odpowiada tej zaobserwowanej. Nasze najnowsze obserwacje dają nam górną granicę rozmiarów dysków, co jest w dużej mierze zgodne z poprzednimi badaniami” – wyjaśnia Pineda.

W szczególności specyficzny moment pędu opadającej materii jest bezpośrednio związany z możliwym maksymalnym promieniem keplerowskiego dysku protogwiazdowego. Zakładając, że masa gwiazdowa wynosi około 5% masy naszego Słońca, naukowcy szacują, że górna granica keplerowskiego dysku wynosi, zgodnie z wcześniejszymi szacunkami, około 60 jednostek astronomicznych (AU), czyli około dwa razy więcej, niż nasz układ planetarny. Sugeruje to, że duże dyski (większych, niż 80 AU) nie mogą się formować na wczesnym etapie życia gwiazdy, a zatem wpływać na punkt początkowy dla scenariusza formowania się planet.

Następnym krokiem astronomów będzie obserwacja takich układów na różnych etapach ich ewolucji oraz w różnych środowiskach, aby sprawdzić, czy wpływają one na określony profil momentu pędu. Odkrycia te można następnie włączyć do symulacji numerycznych lub porównać z nimi, aby lepiej zrozumieć koewolucję gęstego jądra tworzącego gwiazdę i otaczający ją dysk protoplanetarny.

Opracowanie:
Agnieszka Nowak

Źródło:
MPE

Vega


Załączniki:
original.jpg
original.jpg [ 301.66 KiB | Przeglądany 758 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 10 września 2019, 17:32 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Poświata po zdarzeniu rozjaśnia naturę i pochodzenie łączenia się gwiazd neutronowych

Ostatni rozdział historycznej detekcji potężnego złączenia się dwóch gwiazd neutronowych w 2017 r. został oficjalnie napisany. Po tym jak niezwykle jasny wybuch ostatecznie zgasnął w czerni, międzynarodowy zespół naukowców kierowany przez Northwestern University starannie stworzył jej poświatę – ostatnią część cyklu życia słynnego zdarzenia.

Powstały obraz jest nie tylko najgłębszym jak dotąd obrazem poświaty kolizji gwiazd neutronowych, ale także ujawnia tajemnice dotyczące początków połączenia, utworzonego przez nią strumienia oraz natury krótszych rozbłysków gamma.

Wielu naukowców uważa połączenie się gwiazd neutronowych z 2017 r., nazwane GW170817, za największe jak dotąd odkrycie LIGO. Po raz pierwszy astrofizycy schwytali dwie zderzające się gwiazdy neutronowe. Wykryte zarówno na falach grawitacyjnych, jak i w promieniowaniu elektromagnetycznym.

Światło z GW170817 zostało wykryte częściowo dlatego, że obiekty znajdowały się w pobliżu, dzięki czemu były jasne i stosunkowo łatwe do znalezienia. Gdy gwiazdy neutronowe zderzyły się, wyemitowały kilonową – światło 1000 razy jaśniejsze niż klasyczna nowa, wynikająca z tworzenia ciężkich pierwiastków po połączeniu. Ale właśnie ta jasność sprawiła, że jej poświata – utworzona ze strumienia podróżującego z prędkością bliską prędkości światła, uderzającego w otaczające środowisko – była tak trudna do zmierzenia.

Począwszy od grudnia 2017 r. Kosmiczny Teleskop Hubble’a wykrywał poświatę w świetle widzialnym pozostałą po połączeniu się i ponownie odwiedzał jej lokalizację 10 razy w ciągu półtorej roku.

Pod koniec marca 2019 r. zespół Wen-fai Fong, która przewodziła badaniom, wykorzystał teleskop Hubble’a, aby uzyskać ostateczny obraz i najgłębsze jak dotąd dane obserwacyjne. W ciągu 7,5 godziny teleskop zarejestrował obraz nieba w miejscu, w którym nastąpiło zderzenie gwiazd neutronowych. Powstały obraz pokazał – 584 dni po połączeniu – że światło widzialne pochodzące ze złączenia ostatecznie zniknęło.

Następnie zespół Fong musiał usunąć jasność otaczającej galaktyki, aby odizolować wyjątkowo słabą poświatę tego zdarzenia.

Fong, Peter Blanchard (drugi autor pracy) i ich współpracownicy podeszli do wyzwania, wykorzystując wszystkie 10 obrazów, w których kilonowa zniknęła, a poświata została, a także ostateczny, głęboki obraz Hubble’a bez śladów kolizji. Zespół nałożył swój głęboki obraz Hubble’a na każdy z 10 obrazów poświaty. Następnie, używając algorytmu, drobiazgowo odjął całe światło z obrazów Hubble’a z wcześniejszych zdjęć poświaty.

Efekt: końcowa seria zdjęć przedstawiających słabą poświatę bez zanieczyszczenia świetlnego pochodzącego z galaktyki tła. Całkowicie zgodny z przewidywanymi modelami, jest jak dotąd najdokładniejszą serią w skali czasowej obrazowania poświaty światła widzialnego GW170817 stworzonego do tej pory.

Dzięki głębokiemu polu Hubble’a, Fong i jej współpracownicy uzyskali nowe informacje na temat galaktyki macierzystej GW170817. Być może najbardziej zaskakujące są takie, że obszar wokół połączenia nie był gęsto zaludniony gromadami gwiazd.

„Poprzednie badania sugerowały, że pary gwiazd neutronowych mogą tworzyć się i łączyć w gęstym środowisku gromady kulistej. Nasze obserwacje pokazują, że zdecydowanie tak nie jest w przypadku tego połączenia się gwiazd neutronowych” – mówi Fong.

Fong uważa również, zgodnie z nowym obrazem, że odległe kosmiczne eksplozje zwane krótkimi błyskami gamma są w rzeczywistości zderzeniami pomiędzy gwiazdami neutronowymi – tylko widzianymi pod innym kątem. Obydwa wytwarzają relatywistyczne dżety będące jak wąż strażacki z materii, która porusza się z prędkością bliską prędkości światła. Astrofizycy zazwyczaj widzą strumienie pochodzące z rozbłysków gamma, gdy są one wycelowane bezpośrednio w naszym kierunku. Ale GW170817 obserwowano pod kątem 30 stopni, czego nigdy wcześniej nie dokonano na optycznej długości fali.

Opracowanie:
Agnieszka Nowak

Źródło:
Northwestern University

Vega


Załączniki:
afterglowshe.jpg
afterglowshe.jpg [ 68.38 KiB | Przeglądany 725 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 11 września 2019, 19:53 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Czarna dziura o masie pośredniej rzuca gwiazdę przez Drogę Mleczną

Międzynarodowy zespół naukowców wskazał pochodzenie uciekającej z dużą prędkością gwiazdy o nazwie PG 1610+062 i ustalił, że prawdopodobnie została ona wyrzucona z rodzimej gromady przez czarną dziurę o masie pośredniej.

Aby nałożyć ścisłe ograniczenia na prognozowaną prędkość rotacji PG 1610+062, jej prędkość radialną, a także dokładnie zmierzyć jej skład chemiczny, zespół potrzebował danych spektralnych gwiazdy, ale odległość i położenie na niebie sprawiły, że Echellette Spectrograph and Imager (ESI) W. M. Keck Observatory okazało się jedynym narzędziem do tego zadania.

„Na półkuli północnej tylko połączenie Obserwatorium Kecka i ESI dały nam to, czego potrzebowaliśmy. Obszar zbierania Kecka pozwolił nam zgromadzić wystarczającą ilość fotonów dla naszego obiektu, a ESI ma dokładnie odpowiednią rozdzielczość, która jest wystarczająco wysoka, aby analizować wszystkie cechy widmowe” – mówi współautor pracy Thomas Kupfer, doktorant Kavli Institute for Theoretical Physics z University of California, Santa Barbara.

Chociaż wcześniej uważano ją z starą gwiazdę o masie połowy Słońca, typową dla halo galaktycznego, dane z Obserwatorium Kecka pokazały, że PG 1610+062 jest w rzeczywistości zaskakująco młodą gwiazdą, która jest dziesięć razy masywniejsza i została wyrzucona z dysku galaktycznego z prędkością bliską prędkości ucieczki z Drogi Mlecznej.

Istnieją jeszcze szybsze gwiazdy, zwane gwiazdami o wysokiej prędkości (hyper-velocity stars – HVS) – pierwsze trzy zostały odkryte w 2005 roku. Wśród nich jest unikalna gwiazda US 708, którą znaleziono na podstawie obserwacji za pomocą spektrometru obrazowania niskiej rozdzielczości (Low Resolution Imaging Spectrometer – LRIS) na teleskopie Keck I; poruszała się tak szybko, że wymknęła się grawitacji Drogi Mlecznej. Osiągnięcie takich prędkości wymaga niezwykle dramatycznego zdarzenia procy.

Symulacje przeprowadzone w 1988 roku sugerują, że olbrzymia czarna dziura o masie 4 mln mas Słońca (supermasywna czarna dziura – SMBH) mogłaby załatwić sprawę przez zakłócenie układu podwójnego gwiazd, czyli połknięcia jednej gwiazdy i pozostawienie jej kosmicznego partnera z całą energią w układzie, wyrzucając ją daleko poza prędkość ucieczki z Drogi Mlecznej. Z braku innych wiarygodnych wyjaśnień dotyczących powstawania HVS, scenariusz ten został łatwo zaakceptowany jako standardowy mechanizm wyrzucania, w szczególności po obserwacyjnych dowodach na istnienie takiej SMBH w centrum Galaktyki.

Wykorzystując precyzyjne pomiary astrometryczne z misji Gaia, określono drogę przybycia PG 1610+062 „znikąd” z okolicy centrum Drogi Mlecznej, ale z ramienia Strzelca naszej Galaktyki, co wyklucza pomysł, że to nasza centralna SMBH wyrzuciła tę gwiazdę.

Jeszcze bardziej interesujące jest pochodne ekstremalne przyspieszenie PG 1610+062, które najprawdopodobniej wyklucza wszystkie alternatywne scenariusze, oprócz interakcji z supermasywną czarną dziurą o masie pośredniej (MMBH). Przewiduje się, że obiekty takie istnieją w młodych gromadach gwiazd w ramionach spiralnych Drogi Mlecznej, ale żadnych jeszcze nie wykryto.

Jest wiele więcej informacji na temat tej gwiazdy i jej miejsca pochodzenia. W miarę postępu misji Gaia, pojawia się precyzja, a miejsce pochodzenia zostaje jeszcze bardziej zawężone, co może umożliwić astronomom wyszukiwanie macierzystej gromady gwiazd, a ostatecznie czarnej dziury.

Zespół aktualnie poszukuje dodatkowych kandydatów podobnych do PG 1610+062, wykorzystując satelitę Gaia oraz inne duże przeglądy nieba. Jaśniejsze i bliższe gwiazdy mogą być odpowiednie do prześledzenia ich drogi z macierzystych gromad gwiazd, które mogą dostarczyć dowodów na obecność czarnych dziur o masach pośrednich znajdujących się w ich wnętrzach.

Opracowanie:
Agnieszka Nowak

Źródło:
Obserwatorium Keck

Vega


Załączniki:
blender_milkyway-300x225.jpg
blender_milkyway-300x225.jpg [ 15.59 KiB | Przeglądany 711 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 12 września 2019, 18:24 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Czarna dziura z trzema gorącymi posiłkami dziennie

Jest takie powiedzenie, że pomijanie posiłków jest niezdrowe. Najwyraźniej supermasywna czarna dziura w centrum oddalonej o miliony lat świetlnych galaktyce otrzymała tę wiadomość.

Zespół astronomów odnalazł rozbłyski rentgenowskie powtarzające się co ok. 9 godzin, pochodzące z centrum galaktyki o nazwie GSN 069. Dane uzyskane z obserwatorium rentgenowskiego Chandra i XMM-Newton wskazują, że supermasywna czarna dziura znajdująca się tam zużywa duże ilości materii w regularnych odstępach czasu.

Podczas gdy naukowcy wcześniej odkryli dwie czarne dziury o masie gwiazdowej (ważące ok. 10 razy więcej, niż Słońce), które czasami przechodzą regularne wybuchy, do tej pory nie wykryto jeszcze takiego zachowania się supermasywnej czarnej dziury.

Czarna dziura w centrum GSN 069, położona 250 mln lat świetlnych od Ziemi, ma masę ok. 400 000 razy większą, niż Słońce. Naukowcy szacują, że zużywa materię równoważną około czterem Księżycom ok. 3 razy dziennie.

„Ta czarna dziura ma plan posiłków, jakiego wcześniej nie widzieliśmy. To zachowanie jest tak bezprecedensowe, że musieliśmy wymyślić nowe wyrażenie, aby je opisać: ‘prawie okresowe erupcje rentgenowskie’ (X-ray Quasi-Periodic Eruptions)” – mówi Giovanni Miniutti z ESA Center for Astrobiology w Hiszpanii, pierwszy autor artykułu.

XMM-Newton jako pierwszy zaobserwował to zjawisko w GSN 069 po wykryciu dwóch wybuchów 24 grudnia 2018 r. Następnie Miniutti i jego współpracownicy śledzili kolejne obserwacje XMM-Newton w dniach 16 i 17 stycznia 2019 r. i znaleźli 5 wybuchów. Obserwacje Chandry niecały miesiąc później, 14 lutego, pokazały dodatkowe 3 wybuchy.

„Łącząc dane z tych dwóch obserwatoriów rentgenowskich, śledziliśmy te okresowe wybuchy przez co najmniej 54 dni. Daje nam to wyjątkową okazję do obserwowania przepływu materii do supermasywnej czarnej dziury, która wielokrotnie przyspiesza i zwalnia” – powiedział współautor Richard Saxton z European Space Astronomy Center w Madrycie.

Podczas wybuchów promieniowanie X staje się ok. 20 razy jaśniejsze, niż w czasie ciszy. Wzrasta również temperatura gazu opadającego w kierunku czarnej dziury, od ok. 500 000 stopni Celsjusza w okresach ciszy do ok. 1,4 mln st. C podczas wybuchów. Temperatura tego ostatniego podobna jest do temperatury gazu znajdującego się wokół najaktywniej rosnących supermasywnych czarnych dziur.

Pochodzenie tego gorącego gazu było tajemnicą, ponieważ wydaje się, że jest zbyt gorący, aby można go było skojarzyć z dyskiem opadającej materii, który otacza czarną dziurę. Chociaż jego pochodzenie również jest tajemnicą w GSN 069, zdolność badania supermasywnej czarnej dziury, w której gorący gaz wielokrotnie się formuje, a następnie znika, może dostarczyć ważnych wskazówek.

„Uważamy, że źródłem promieniowania X jest gwiazda, którą czarna dziura częściowo lub całkowicie rozerwała na części i powoli konsumuje kawałek po kawałku. Ale jeżeli chodzi o powtarzające się wybuchy, jest to zupełnie inna historia, której pochodzenie należy zbadać przy użyciu dodatkowych danych i nowych modeli teoretycznych” – powiedziała współautorka Margherita Giustini, również z Centrum Astrobiologii ESA.

Spożywanie gazu ze zniszczonej gwiazdy przez supermasywną czarną dziurę było wcześniej obserwowane, ale nigdy nie towarzyszyły temu powtarzalne rozbłyski rentgenowskie. Autorzy sugerują, że istnieją dwa możliwe wyjaśnienia wybuchów. Jednym z nich jest to, że ilość energii na dysku gromadzi się aż stanie się niestabilna i materia gwałtownie wpadnie do czarnej dziury, powodując wybuchy. Następnie cykl się powtórzy. Innym jest interakcja między dyskiem a drugim ciałem krążącym wokół czarnej dziury, być może pozostałością częściowo rozerwanej gwiazdy.

Dane z Chandra były kluczowe dla tego badania, ponieważ były w stanie wykazać, że źródło promieniowania X znajduje się w centrum galaktyki gospodarza, czyli tam, gdzie oczekuje się obecności supermasywnej czarnej dziury. Kombinacja danych z Chandra i XMM-Newton sugeruje, że rozmiar i czas trwania posiłków czarnej dziury nieznacznie się zmniejszył a przerwa między posiłkami wzrosła. Przyszłe obserwacje będą miały kluczowe znaczenie dla sprawdzenia, czy trend się utrzyma.

Supermasywne czarne dziury są zwykle większe, niż ta w GSN 069, mając masy milionów a nawet miliardów słońc. Im większa czarna dziura, tym wolniejsze będą jej wahania jasności, więc zamiast wybuchać co dziewięć godzin, powinna wybuchać co kilka miesięcy lub lat, co prawdopodobnie tłumaczy, dlaczego wybuchy prawie okresowe nigdy wcześniej nie były widoczne.

Przykłady dużych wzrostów i spadków ilości promieni X wytwarzanych przez czarne dziury zaobserwowano w kilku przypadkach, stosując powtarzane obserwacje przez miesiące lub lata. Zmiany w niektórych obiektach są znacznie szybsze niż oczekiwano w standardowej teorii dysków opadającej materii otaczającej czarną dziurę, ale można je oczywiście uwzględnić, gdyby miały podobne zachowanie do GSN 069.

Opracowanie:
Agnieszka Nowak

Źródło:
Chandra

Vega


Załączniki:
gsn069.jpg
gsn069.jpg [ 350.76 KiB | Przeglądany 704 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 17 września 2019, 15:58 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Gwiazda neutronowa prawie zbyt masywna, aby istnieć

Astronomowie korzystający z GBT odkryli najmasywniejszą do tej pory znaną gwiazdę neutronową, szybko wirujący pulsar oddalony o ok. 4600 lat świetlnych od Ziemi. Ten rekordowy obiekt wiruje na krawędzi istnienia, zbliżając się do maksymalnej teoretycznej masy możliwej dla gwiazdy neutronowej.

Gwiazdy neutronowe – zwarte pozostałości masywnych gwiazd, które wybuchły jako supernowe – są najgęstszymi „normalnymi” obiektami w znanym Wszechświecie. (Czarne dziury są gęstsze, ale dalekie od normalności). Jedna kostka cukru zbudowana z materii gwiazdy neutronowej na Ziemi ważyłaby 100 mln ton, czyli mniej więcej tyle samo, co cała ludzka populacja. Chociaż astronomowie i fizycy badali te obiekty od dziesięcioleci i zachwycali się nimi, pozostaje wiele tajemnic dotyczących natury ich wnętrz: czy zgniecione neutrony stają się „nadciekłe” i płyną swobodnie? Czy rozpadają się na zupę subatomowych kwarków lub innych egzotycznych cząstek? Jaki jest punkt krytyczny, gdy grawitacja wygrywa z materią i tworzy czarną dziurę?

Zespół astronomów korzystający z Green Bank Telescope (GBT) zbliżył nas do znalezienia tych odpowiedzi.

Naukowcy, członkowie NANOGrav Physics Frontiers Center, odkryli, że szybko rotujący pulsar milisekundowy, zwany J0740+6620, jest najbardziej masywną gwiazdą neutronową, jaką kiedykolwiek zmierzono, ma średnicę 30 km i masę 2,17 mas Słońca. Ten pomiar zbliża go do granicy tego, jak masywny i zwarty może stać się pojedynczy obiekt bez zmiażdżenia się do czarnej dziury. Ostatnie prace dotyczące fal grawitacyjnych zaobserwowanych przez LIGO podczas zderzenia się gwiazd neutronowych sugerują, że 2,17 masy Słońca może znajdować się blisko tej granicy.

„Gwiazdy neutronowe są tak samo tajemnicze, jak fascynujące. Te obiekty wielkości miasta to w istocie olbrzymie jądra atomowe. Są tak masywne, że ich wnętrza nabierają dziwnych właściwości. Znalezienie maksymalnej masy, na jaką pozwala fizyka i natura, może nas wiele nauczyć o tym niedostępnym królestwie astrofizyki” – mówi Thankful Cromartie, absolwent University of Virginia i doktorant Grote Reber w National Radio Astronomy Observatory w Charlottesville w stanie Wirginia.

Pulsary emitują bliźniacze wiązki fal radiowych ze swoich biegunów magnetycznych, które przemierzają przestrzeń kosmiczną w sposób przypominający latarnię morską. Niektóre rotują setki razy na sekundę. Ponieważ pulsary wirują z tak fenomenalną prędkością i regularnością, astronomowie mogą je wykorzystywać jako kosmiczny odpowiednik zegarów atomowych. Tak precyzyjne mierzenie czasu pomaga im badać naturę czasoprzestrzeni, mierzyć masy obiektów gwiazdowych i lepiej rozumieć ogólną teorię względności.

Gdy tykający pulsar przechodzi za swoim towarzyszem białym karłem, występuje subtelne (rzędu 10 milionowych sekundy) opóźnienie czasu nadejścia sygnałów. Zjawisko to znane jest jako „opóźnienie Shapiro”. W istocie, grawitacja białego karła, zgodnie z ogólną teorią względności nieznacznie zakrzywia otaczającą ją przestrzeń. To zakrzywienie oznacza, że impulsy z rotującej gwiazdy neutronowej muszą podróżować nieco dalej, gdy omijają zakrzywienia czasoprzestrzeni wywołane przez białego karła.

Astronomowie mogą wykorzystać wielkość tego opóźnienia do obliczenia masy białego karła. Gdy znana jest masa jednego z orbitujących ciał, stosunkowo łatwo jest określić masę drugiego.

Opracowanie:
Agnieszka Nowak

Źródło:
GBO

Vega


Załączniki:
neutron_star.jpg
neutron_star.jpg [ 107.99 KiB | Przeglądany 655 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 18 września 2019, 17:10 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1051
Oddział PTMA: Kraków
Gwiezdne żłobki odległych galaktyk

Międzynarodowy zespół astronomów odkrył, że właściwości obłoków molekularnych i liczba wytwarzanych przez nie gwiazd różni się w zależności od tego, czy znajdują się one w odległych czy pobliskich galaktykach.

Gromady gwiazd powstają w wyniku skupienia obłoków molekularnych, mas zimnego, gęstego gazu, które znajdują się w każdej galaktyce. Właściwości fizyczne tych obłoków w naszej własnej galaktyce i pobliskich galaktykach znane są od dawna. Ale czy są one identyczne w odległych galaktykach, które leżą ponad 8 mld lat świetlnych stąd? Po raz pierwszy międzynarodowy zespół pod kierownictwem Uniwersytetu Genewskiego (UNIGE) był w stanie wykryć obłoki molekularne w przodku Drogi Mlecznej, dzięki niespotykanej zdolności rozdzielczej przestrzennej osiągniętej w tak odległej galaktyce. Obserwacje te pokazują, że odległe obłoki mają większą masę, gęstość i wewnętrzne turbulencje, niż obłoki znajdujące się w pobliskich galaktykach i że tworzą znacznie więcej gwiazd. Astronomowie przypisują te różnice warunkom otaczającego środowiska międzygwiazdowego w odległych galaktykach, które są zbyt ekstremalne, aby obłoki molekularne typowe dla pobliskich galaktyk mogły przetrwać.

Obłoki molekularne składają się z gęstego, zimnego wodoru wirujące z prędkością naddźwiękową, generującego wahania gęstości, które skupiają się i tworzą gwiazdy. W pobliskich galaktykach takich jak Droga Mleczna, obłok molekularny wytwarza między 10^3 i 10^6 gwiazd. Jednak w odległych galaktykach, znajdujących się ponad 8 mld lat świetlnych stąd astronomowie zaobserwowali olbrzymie gromady gwiazd zawierające do 100 razy więcej gwiazd. Skąd taka różnica?

Wyjątkowa obserwacja możliwa dzięki kosmicznej lupie
Aby odpowiedzieć na to pytanie, astronomowie byli w stanie wykorzystać naturalny teleskop – zjawiska soczewkowania grawitacyjnego – w połączeniu z ALMA, interferometrem złożonym z 50 anten radiowych, które rekonstruują cały obraz galaktyki natychmiast. „Soczewki grawitacyjne są naturalnym teleskopem, który tworzy efekt szkła powiększającego, gdy masywny obiekt znajduje się między obserwatorem a odległym obiektem. Dzięki temu efektowi niektóre części odległych galaktyk rozciągają się na niebie i można je badać w niezrównanej rozdzielczości 90 lat świetlnych!” – wyjaśnia Miroslava Dessauges, badaczka na Wydziale Astronomii na Wydziale Naukowym UNIGE i pierwsza autorka badania. Tymczasem ALMA można wykorzystać do pomiaru poziomu tlenku węgla, który działa jak znacznik wodoru molekularnego tworzącego zimne obłoki.

Rozdzielczość ta umożliwiła indywidualne scharakteryzowanie obłoków molekularnych w odległej galaktyce, nazwanej „Kosmicznym Wężem”, oddalonej o 8 mld lat świetlnych. Astronomowie byli zatem w stanie porównać masę, rozmiar, gęstość i wewnętrzne turbulencje obłoków molekularnych w pobliskich i odległych galaktykach.

Obłoki molekularne odporne na ekstremalne warunki
Nowe obserwacje pokazały, że obłoki molekularne w odległych galaktykach miały masę, gęstość i turbulencje od 10 do 100 razy wyższe, niż w pobliskich galaktykach. „Takie wartości zmierzono tylko w obłokach znajdujących się w pobliżu oddziałujących galaktyk, które mają warunki międzygwiezdne przypominające warunki odległych galaktyk” – dodaje Miroslava Dessauges. Naukowcy mogli porównać różnice we właściwościach fizycznych obłoków ze środowiskami galaktycznymi, które są bardziej ekstremalne i wrogie w odległych galaktykach, niż w tych bliższych. „Obłok molekularny zwykle występujący w pobliskiej galaktyce natychmiast zapadłby się i zostałby zniszczony w ośrodku międzygwiezdnym odległych galaktyk, stąd jego zwiększona gęstość i turbulencje gwarantują jego przetrwanie i równowagę” – wyjaśnia Miroslava Dessauges. „Charakterystyczna masa obłoków molekularnych w Kosmicznym Wężu wydaje się doskonale zgadzać z przewidywaniami naszego scenariusza podziału turbulentnych dysków galaktycznych. W rezultacie scenariusz ten można przedstawić jako mechanizm formowania się masywnych obłoków molekularnych w odległych galaktykach” – dodaje Lucio Mayer, profesor w Centre for Physical and Cosmological Theory Uniwersytetu w Zurychu.

Zespół odkrył także, że wydajność formowania się gwiazd w galaktyce Kosmicznego Węża jest szczególnie wysoka, prawdopodobnie wywołana wysoce naddźwiękową wewnętrzną turbulencją obłoków. W pobliskich galaktykach obłok molekularny tworzy gwiazdy stanowiące około 5% jego masy. W odległych galaktykach liczba ta wzrasta do 30%.

Astronomowie będą teraz badać inne odległe galaktyki w celu potwierdzenia wyników obserwacji uzyskanych dla Kosmicznego Węża. Miroslava Dessauges podsumowuje: „Podniesiemy również jeszcze bardziej rozdzielczość, korzystając z wyjątkowej wydajności interferometru ALMA. Analogicznie, musimy bardziej szczegółowo zrozumieć zdolności obłoków molekularnych w odległych galaktykach do tak skutecznego formowania gwiazd.”

Opracowanie:
Agnieszka Nowak

Źródło:
UNIGE

Vega


Załączniki:
unige_122992.jpeg
unige_122992.jpeg [ 163.69 KiB | Przeglądany 649 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
SOS PTMA
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Wyświetl posty nie starsze niż:  Sortuj wg  
Nowy temat Odpowiedz w temacie  [ Posty: 532 ]  Przejdź na stronę Poprzednia  1 ... 22, 23, 24, 25, 26, 27  Następna

Czas środkowoeuropejski letni


Kto jest online

Użytkownicy przeglądający to forum: Obecnie na forum nie ma żadnego zarejestrowanego użytkownika i 3 gości


Nie możesz tworzyć nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz dodawać załączników

Szukaj:
Przejdź do:  
cron
Technologię dostarcza phpBB® Forum Software © phpBB Group