Dzisiaj jest 01 czerwca 2023, 15:33

Czas środkowoeuropejski letni




Nowy temat Odpowiedz w temacie  [ Posty: 1308 ]  Przejdź na stronę Poprzednia  1 ... 49, 50, 51, 52, 53, 54, 55 ... 66  Następna
Autor Wiadomość
Post: 07 stycznia 2022, 15:27 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Pierwotna struktura gwiazdowa pomaga nam odkryć najwcześniejsze etapy rozwoju Drogi Mlecznej

Astronomowie badają pozostałość po starej gromadzie kulistej w Drodze Mlecznej, mając nadzieję na znalezienie wskazówek, które pomogą nam zrozumieć najwcześniejsze okresy rozwoju naszej Galaktyki.

Zespół naukowców doniósł 5 stycznia 2022 roku w Nature o odkryciu pozostałości najstarszej gromady kulistej, jaką do tej pory odkryto. Badanie to łączy dane z satelity Gaia z obserwacjami wykonanymi przez Gran Telescopio Canarias, znajdującym się na Roque de los Muchachos Observatory (Garafía, La Palma), wraz z teleskopami CHFT i Gemini-North w Obserwatorium Mauna Kea (Hawaje).

Gromady kuliste to skupiska gwiazd, zwykle bardzo starych, które znajdują się na obrzeżach galaktyk. Gwiazdy w tej gromadzie kulistej mają bardzo niski udział metali ciężkich. Ta obserwacja otwiera unikalne okno bezpośrednio na pierwszą epokę formowania się gwiazd we Wszechświecie – mówi Nicolas Martin, badacz z Obserwatorium w Strasburgu, który jest pierwszym autorem pracy. Znaleźliśmy relikt epoki, w której powstały pierwsze struktury gwiazdowe – dodaje. Do tej pory nikt nie wiedział, że istniały gromady kuliste o tak małej zawartości ciężkich pierwiastków, dlatego ta praca jest kluczowym odkryciem dla zrozumienia, jak tworzyły się gwiazdy w pierwotnym Wszechświecie.

Aby zbadać pierwsze struktury gwiezdne, które uformowały się we Wszechświecie, astronomowie mogliby badać najbardziej odległe galaktyki lub bardzo szczegółowo studiować najstarsze struktury w Drodze Mlecznej – metoda ta została nazwana archeologią Galaktyki. Większość gwiazd w naszym sąsiedztwie, takich jak Słońce, została uformowana w naszej Galaktyce. Jednak niewielka część gwiazd i gromad gwiazd w Drodze Mlecznej, które można znaleźć w jej otoczeniu, została tu przeniesiona w mniejszych galaktykach – wyjaśnia Jonay González, badacz z Instituto de Astrofísica de Canarias i współautor artykułu. Odkryta przez nas gromada została prawdopodobnie wprowadzona do Galaktyki w taki sam sposób, ale traciła swoje gwiazdy będąc na orbicie wokół Drogi Mlecznej w wyniku przyciągania pływowego, pozostawiając „niebiański ślad” gwiazd – dodaje.

Zespół naukowców zbadał mapę zarejestrowaną przez satelitę Gaia, używając nowego algorytmu, który pomaga wyodrębnić te rzadkie zgrupowania gwiazd. Jedną z odkrytych struktur był nowy strumień gwiazd, który astronomowie nazwali „C-19”. W tym samym czasie badania przeglądu Pristine, prowadzone na Hawajach, mapowały niebo w celu dokonania systematycznych pomiarów obfitości ciężkich pierwiastków w milionach gwiazd. Połączenie tych dwóch badań wykazało, że C-19 zawiera gwiazdy, w których obfitość ciężkich pierwiastków jest bardzo niska.

Dalsze obserwacje przy użyciu Teleskopu Gemini North na Hawajach oraz Gran Telescopio Canarias na La Palmie potwierdziły, że zaburzony obiekt jest gromadą kulistą, a także wyjątkowo niski poziom ciężkich pierwiastków; tak niski, jak 0,04% naszego Słońca i znacznie niższy niż w przypadku jakiejkolwiek znanej struktury we Wszechświecie.

Opracowanie:
Agnieszka Nowak

Źródło:
IAC

Vega

Na ilustracji: Wizja artystyczna pozostałości po gromadzie kulistej C-19 w Drodze Mlecznej. Źródło: Gabriel Pérez Díaz (SMM, IAC)


Załączniki:
cumulo_halo_via_lactea_1920x1080_fot_final_ENG.jpg
cumulo_halo_via_lactea_1920x1080_fot_final_ENG.jpg [ 39.35 KiB | Przeglądany 4415 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 09 stycznia 2022, 14:57 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Ostatnia poważna kolizja naszej Galaktyki

Korzystając z danych z sondy kosmicznej Gaia, zespół naukowców bada historię gwiazd naszej Galaktyki, aby określić naturę jej ostatniej kolizji z galaktyką karłowatą.

Jedną z charakterystycznych cech współczesnej kosmologii jest opis sposobu ewolucji galaktyk: hierarchiczny proces zderzeń i łączenia się z innymi układami. Nigdzie we Wszechświecie nie mamy tak wyraźnego obrazu tego procesu, jak w naszej Drodze Mlecznej. Obecnie jeden z naszych pobliskich sąsiadów, galaktyka karłowata Strzelca, ulega zaburzeniom orbitalnym (galaktyka karłowata ma mniej niż około 1% masy gwiazdowej normalnej galaktyki spiralnej, takiej jak Droga Mleczna, a często znacznie mniej). Dwie inne pobliskie galaktyki karłowate, Wielki i Mały Obłok Magellana (mające odpowiednio około 1% i 0,7% masy gwiazdowej Drogi Mlecznej), opadają w naszym kierunku. Tymczasem strumienie gromad kulistych okrążają Galaktykę, zaznaczając efekty wcześniejszego zderzenia. Zapis jeszcze dawniejszych fuzji można uzyskać na podstawie pozycji i ruchów gwiazd w halo Drogi Mlecznej, czyli w przybliżeniu kulistym rozkładzie gwiazd (o średnicy około 100 000 lat świetlnych) starszych niż 10-12 miliardów lat. Tymczasem Andromeda, nasza najbliższa duża sąsiednia galaktyka, znajduje się około dziesięć razy dalej niż te galaktyki karłowate. Zderzenie z nią jest przewidywane za kolejne 5 miliardów lat.

Sonda kosmiczna Gaia została wystrzelona w 2013 roku w celu stworzenia precyzyjnej trójwymiarowej mapy Drogi Mlecznej poprzez zbadanie 1% z jej 100 miliardów gwiazd. Zespół astronomów wykorzystał wyniki badań z Gai w połączeniu z nowym pomiarem zewnętrznych obszarów naszej Galaktyki za pomocą 6,5-metrowego teleskopu MMT w Arizonie (H3 Survey), aby poskładać historię gwiazd Drogi Mlecznej w bezprecedensowe szczegóły, by określić naturę ostatniego połączenia Galaktyki. Były już przekonujące dowody, że pojedyncza galaktyka karłowata połączyła się z Drogą Mleczną około 8-10 miliardów lat temu. Znane jako Gaia-Sausage-Enceladus (GSE), to, co pozostało z obiektu, jest wnioskowane z gwiazd w wewnętrznym halo na podstawie ich ruchów i składu. Nadal jednak nie wiadomo, czy GSE zderzyło się z naszą Galaktyką czołowo, czy jednak przed końcowym zderzeniem okrążyło ją, a jeżeli tak, to jak wyglądała ta orbita?

Astronomowie zajęli się tymi pytaniami, modelując zmierzone przez Gaia gwiazdy w halo za pomocą zestawu symulacji numerycznych połączonych z porównaniem wieku i składu gwiazd. Wykazali, że GSE zawierała około pół miliarda gwiazd i nie krążyła wokół Drogi Mlecznej, lecz zbliżała się do niej poruszając się w kierunku wstecznym (czyli przeciwnym do ruchu obrotowego Galaktyki). Dochodzą również do wniosku, że około 50% obecnego halo gwiazdowego Drogi Mlecznej i około 20% halo ciemnej materii z niej pochodzi. Droga Mleczna zawiera gwiazdy, które mają około 13 miliardów lat, choć mogły one zostać pochwycone przez Galaktykę po jej uformowaniu. Jednak wraz z zakończeniem tych badań, prawie cały wzrost Drogi Mlecznej w ciągu ostatnich 10 miliardów lat może być wyjaśniony.

Opracowanie:
Agnieszka Nowak

Źródło:
CfA

Vega

Na ilustracji: Mały Obłok Magellana, który łączy się z Drogą Mleczną. Po prawej stronie jest widoczna pierwszoplanowa gromada kulista 47 Tucanae. Źródło: Jose Mtanous.


Załączniki:
SMC_Mtanous_960.jpg
SMC_Mtanous_960.jpg [ 62.06 KiB | Przeglądany 4395 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 12 stycznia 2022, 18:49 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Astronomowie są świadkami, jak umierająca gwiazda osiąga swój koniec

Astronomowie po raz pierwszy zaobserwowali w czasie rzeczywistym dramatyczny koniec życia czerwonego nadolbrzyma, obserwując gwałtowną autodestrukcję masywnej gwiazdy i ostateczną śmierć, zanim zapadła się w supernową.

Korzystając z teleskopów Pan-STARRS na Haleakalā na Maui oraz W. M. Keck Observatory na Maunakea na Hawajach, zespół badaczy prowadzących eksperyment Young Supernova Experiment (YSE) obserwował czerwonego nadolbrzyma w ciągu ostatnich 130 dni poprzedzających jego śmiertelną detonację.

To przełom w naszym rozumieniu tego, co dzieje się z masywnymi gwiazdami na chwilę przed śmiercią – mówi Wynn Jacobson-Galán, stypendysta NSF na UC Berkeley i główny autor badań. Bezpośrednie wykrycie aktywności poprzedzającej supernową w czerwonym nadolbrzymie nigdy wcześniej nie było obserwowane w przypadku zwykłej supernowej typu II. Po raz pierwszy obserwowaliśmy eksplozję czerwonego nadolbrzyma!

Pan-STARRS po raz pierwszy wykrył skazaną na zagładę masywną gwiazdę latem 2020 roku dzięki ogromnej ilości światła promieniującego z czerwonego nadolbrzyma. Kilka miesięcy później, jesienią roku 2020, niebo rozświetliła supernowa.

Zespół szybko uchwycił potężny błysk i uzyskał pierwsze widmo tej energetycznej eksplozji, nazwanej supernową 2020tlf, lub SN 2020tlf, używając spektrografu LRIS (Low Resolution Imaging Spectrometer) w Obserwatorium Kecka. Dane pokazały bezpośrednie dowody na istnienie gęstej materii okołogwiazdowej otaczającej gwiazdę w momencie wybuchu, prawdopodobnie tego samego gazu gwałtownie wyrzucanego przez czerwonego nadolbrzyma, który Pan-STARRS zobrazował wcześniej latem.

Keck odegrał kluczową rolę w dostarczeniu bezpośrednich dowodów na przejście masywnej gwiazdy do wybuchu supernowej – mówi starsza autorka, Raffaella Margutti, profesor nadzwyczajna astronomii na UC Berkeley. To jak oglądanie tykającej bomby zegarowej. Nigdy do tej pory nie potwierdziliśmy tak gwałtownej aktywności w umierającym czerwonym nadolbrzymie, gdzie widzimy, jak wytwarza ona tak jasną emisję, a następnie zapada się i spala, aż do teraz.

Zespół kontynuował monitorowanie SN 2020tlf po wybuchu; w oparciu o dane uzyskane ze spektrografów DEep Imaging and Multi-Object Spectrograph (DEIMOS) oraz Near Infrared Echellette Spectrograph (NIRES) w Obserwatorium Kecka, ustalili, że protoplasta SN 2020tlf, czerwony nadolbrzym, znajdujący się w galaktyce NGC 5731, oddalonej od Ziemi o około 120 mln lat świetlnych, był 10 razy masywniejszy od Słońca.

Odkrycie to przeczy wcześniejszym wyobrażeniom o tym, jak czerwone nadolbrzymy ewoluują tuż przed wybuchem. Do tej pory wszystkie czerwone nadolbrzymy obserwowane przed wybuchem były względnie spokojne: nie wykazywały oznak gwałtownych erupcji lub świecenia, jak to miało miejsce przed SN 2020tlf. Jednakże, to nowe odkrycie jasnego promieniowania pochodzącego od czerwonego nadolbrzyma w ostatnim roku przed wybuchem sugeruje, że przynajmniej niektóre z tych gwiazd muszą przechodzić znaczące zmiany w swojej wewnętrznej strukturze, które następnie skutkują burzliwym wyrzutem gazu na chwilę przed ich zapadnięciem się.

Odkrycie zespołu badaczy toruje drogę dla przejściowych przeglądów, takich jak YSE, mających na celu polowanie na świecące promieniowanie pochodzące od czerwonych nadolbrzymów i zebrania większej ilości dowodów na to, że takie zachowanie może sygnalizować nieuchronny upadek masywnej gwiazdy jako supernowa.

Opracowanie:
Agnieszka Nowak

Źródło:
Keck Observatory

Vega

Na ilustracji: Wizja artystyczna czerwonego nadolbrzyma w ostatnim roku jego życia, który emituje burzliwy obłok gazu. Źródło: W. M. Keck Observatory/Adam Makarenko.


Załączniki:
Red-Supergiant-scaled.jpg
Red-Supergiant-scaled.jpg [ 318.18 KiB | Przeglądany 4369 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 13 stycznia 2022, 19:48 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Odkryto pierwszą eksplozję supernowej z gwiazdy Wolfa-Rayeta

Dzięki badaniom międzynarodowego zespołu astronomów odkryto pierwszą w swoim rodzaju eksplodującą gwiazdę, o której sądzono, że istnieje tylko w teorii. Wyniki badań zostały opublikowane w Nature.

W niedalekiej przeszłości, odkrycie supernowej było uważane za rzadkie zdarzenie. Dzisiaj zaawansowane instrumenty pomiarowe i metody analizy umożliwiają wykrycie pięćdziesięciu takich eksplozji dziennie, co zwiększyło prawdopodobieństwo, że naukowcy będą w stanie dostrzec rzadsze rodzaje eksplozji, które do tej pory istniały jedynie jako teoretyczne konstrukcje.

Niedawno międzynarodowy zespół naukowców, kierowany przez badacza Avishaya Gal-Yama z Wydziału Fizyki Cząstek i Astrofizyki Instytutu Weizmanna, odkrył supernową, której nigdy wcześniej nie zaobserwowano. Jest to eksplozja pochodząca od gwiazdy Wolfa-Rayeta, typu wysoko wyewoluowanej gwiazdy, która traci dużą ilość masy w wyniku intensywnych wiatrów gwiazdowych.

Ewolucja gwiazd typu Wolfa-Rayeta
Jądro każdej gwiazdy zasilane jest przez syntezę jądrową, w której jądra lżejszych pierwiastków łączą się ze sobą, tworząc cięższe pierwiastki. W wyniku fuzji czterech jąder wodoru powstaje atom helu, a w wyniku połączenia kilku jąder helu powstaje węgiel, tlen i tak dalej. Ostatnim pierwiastkiem, który w sposób naturalny powstaje w wyniku syntezy jądrowej jest żelazo, będące najbardziej stabilnym jądrem atomowym. W normalnych warunkach energia wytwarzana w jądrze gwiazdy utrzymuje bardzo wysoką temperaturę, która powoduje rozszerzanie się jej materii gazowej, co pozwala zachować równowagę z siłą grawitacji, przyciągającą masę gwiazdy do jej centrum. Gdy gwieździe zabraknie pierwiastków do stopienia i przestanie wytwarzać energię, równowaga ta zostanie zakłócona, co doprowadzi albo do powstania czarnej dziury, która rozerwie serce gwiazdy, powodując jej zapadnięcie się w sobie, albo do eksplozji gwiazdy, która uwolni do Wszechświata ciężkie pierwiastki, stopione podczas ewolucji.

Długość życia masywnych gwiazd jest uważana za stosunkowo krótką, najwyżej kilka milionów lat. Dla porównania, Słońce ma czas życia około 10 miliardów lat. Zachodzące w jądrze masywnych gwiazd procesy syntezy jądrowej prowadzą do ich rozwarstwiania, w którym cięższe pierwiastki skupiają się w jądrze, a lżejsze tworzą stopniowo warstwy zewnętrzne.

Gwiazdy W-R to szczególnie masywne gwiazdy, którym brakuje jednej lub więcej zewnętrznych warstw składających się z lżejszych pierwiastków. W ten sposób, zamiast wodoru – najlżejszego pierwiastka – powierzchnia gwiazdy charakteryzuje się obecnością helu, a nawet węgla i cięższych pierwiastków. Jednym z możliwych wyjaśnień tego zjawiska jest to, że silne wiatry wiejące ze względu na wysokie ciśnienie w otoczce gwiazdy, rozpraszają jej najbardziej zewnętrzną warstwę, powodując, że gwiazda traci jedną warstwę po drugiej w ciągu kilkuset tysięcy lat.

Pierwsza tego typu eksplodująca gwiazda
Pomimo stosunkowo krótkiego czasu życia i stanu postępującego rozpadu, analiza wciąż rosnącej liczby odkryć supernowych doprowadziła do hipotezy, że gwiazdy W-R po prostu nie wybuchają – one tylko spokojnie zapadają się w czarne dziury – w przeciwnym razie bylibyśmy w stanie zaobserwować już jedną z nich. Hipoteza ta została jednak zburzona dzięki ostatniemu odkryciu.

Analiza spektroskopowa światła emitowanego przez wybuch doprowadziła do odkrycia sygnatur widmowych, które są związane z konkretnymi pierwiastkami. W ten sposób naukowcy byli w stanie wykazać, że eksplozja zawierała atomy węgla, tlenu i neonu, przy czym ten ostatni pierwiastek nie został jeszcze zaobserwowany w ten sposób w żadnej supernowej do tej pory. Co więcej, badacze ustalili, że materia emitująca promieniowanie kosmiczne sama w sobie nie uczestniczyła w wybuchu, lecz pochodziła z przestrzeni otaczającej niestabilną gwiazdę. To z kolei wzmocniło ich hipotezę na korzyść silnych wiatrów, które brały udział w obdzieraniu gwiazdy z jej zewnętrznej otoczki.

Ponieważ obserwacja ta jest pierwszą tego typu, Gal-Yam stwierdza, że może być zbyt wcześnie, aby jednoznacznie określić los wszystkich takich gwiazd. Na tym etapie nie możemy powiedzieć, czy wszystkie gwiazdy Wolfa-Rayeta kończą swoje życie z hukiem, czy nie. Być może niektóre z nich zapadają się po cichu w czarną dziurę – mówi.

Naukowcy szacują, że masa, która rozproszyła się podczas eksplozji, jest prawdopodobnie równa masie Słońca lub nieco mniejszej gwiazdy; gwiazda, która eksplodowała była znacznie cięższa – miała masę co najmniej dziesięć razy większą niż Słońce, więc naukowcy zastanawiają się, gdzie trafiła jej większość.

Gal-Yam sugeruje scenariusz pośredni, w którym oba możliwe losy spełniają się w tym samym czasie: po wyczerpaniu się syntezy jądrowej w jądrze gwiazdy, następuje eksplozja, która wyrzuca część masy w przestrzeń kosmiczną, podczas gdy pozostała masa zapada się sama w siebie, tworząc czarną dziurę. Jedno jest pewne. Nie jest to „cichy” kolaps, o którym często mówiono w przeszłości – mówi Gal-Yam.

W badaniu wykorzystano obserwacje wykonane za pomocą różnych teleskopów, w tym Gran Telescopio Canarias (GTC lub Grantecan), znajdujący się w Obserwatorium Roque de los Muchachos (Garafía, La Palma). Warto wspomnieć, że od czasu, gdy po raz pierwszy dokonano odkrycia, zaobserwowano inną podobną eksplozję gwiazdy Wolfa-Rayeta, co sugeruje, że zjawisko to rzeczywiście nie jest pojedynczym przypadkiem – wyjaśnia Antonio Cabrera Lavers, szef operacji naukowych w Grantecan i badacz stowarzyszonego z IAC, który brał udział w badaniu.

David García Álvarez, współautor pracy i astronom Grantecan związany z IAC, uważa, że: Możliwe jest, że im lepsze staną się nasze instrumenty detekcyjne i pomiarowe, tym bardziej ten typ eksplozji – dziś uważany za rzadki i egzotyczny – stanie się powszechnym widokiem.

Opracowanie:
Agnieszka Nowak

Źródło:
IAC

Vega

Na ilustracji: Gwiazda Wolfa-Rayeta i otaczająca ją mgławica uchwycone przez Kosmiczny Teleskop Hubble'a. Źródło: NASA/ESA Hubble Space Telescope.


Załączniki:
suoernova_resizeimage.jpg
suoernova_resizeimage.jpg [ 219.7 KiB | Przeglądany 4365 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 14 stycznia 2022, 19:09 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Kosmiczny „pająk” źródłem potężnych promieni gamma

Badany przez teleskop SOAR układ podwójny biały karzeł-pulsar milisekundowy, jest pierwszym, który został odkryty na przedostatnim etapie swojej ewolucji.

Korzystając z 4,1-metrowego teleskopu SOAR w Chile, astronomowie odkryli pierwszy przykład układu podwójnego, gdzie gwiazda będąca w trakcie procesu przemiany w białego karła krążyła wokół gwiazdy neutronowej, która właśnie zakończyła przemianę w szybko wirującego pulsara. Para ta, pierwotnie wykryta przez Kosmiczny Teleskop Fermiego, jest „brakującym ogniwem” w ewolucji takich układów podwójnych.

Odkryto, że jasnym, tajemniczym źródłem promieniowania gamma jest szybko wirująca gwiazda neutronowa, zwana pulsarem milisekundowym, który krąży wokół gwiazdy będącej w trakcie ewolucji w białego karła o bardzo niskiej masie. Tego typu układy podwójne są określane przez astronomów mianem „pająków”, ponieważ pulsar ma tendencję do „zjadania” zewnętrznych części gwiazdy towarzyszącej, gdy ta przekształca się w białego karła.

Teleskop Fermiego, od czasu uruchomienia w 2008 roku, kataloguje obiekty we Wszechświecie, które produkują duże ilości promieniowania gamma, jednak nie wszystkie wykryte źródła tego promieniowania zostały sklasyfikowane. Jedno z takich źródeł, nazwane 4FGL J1120.0-2204, było drugim najjaśniejszym źródłem promieniowania gamma na całym niebie, które do tej pory pozostawało niezidentyfikowane.

Międzynarodowy zespół astronomów wykorzystał spektrograf Goodmana zainstalowany na teleskopie SOAR, aby określić prawdziwą tożsamość 4FGL J1120.0-2204. Źródło promieniowania gamma, które emituje również promieniowanie rentgenowskie, zaobserwowane przez kosmiczne teleskopy Swift i XMM-Newton, okazało się być układem podwójnym składającym się z pulsara milisekundowego, który obraca się setki razy na sekundę, oraz prekursora białego karła o ekstremalnie niskiej masie. Para znajduje się w odległości ponad 2600 lat świetlnych od nas.

Widmo optyczne układu podwójnego zmierzone przez spektrograf Goodmana wykazało, że światło pochodzące od towarzysza jest przesunięte dopplerowsko – na przemian ku czerwieni i błękitowi – co wskazuje, że krąży on wokół zwartej, masywnej gwiazdy neutronowej co 15 godzin.

Widma pozwoliły nam również określić przybliżoną temperaturę i ciężar powierzchniowy towarzysza – mówi Samuel Swihart z Laboratorium Badawczego Marynarki Wojennej USA w Waszyngtonie, którego zespół był w stanie wykorzystać te właściwości i zastosować je w modelach opisujących ewolucję układów podwójnych gwiazd. Pozwoliło im to ustalić, że towarzysz jest prekursorem białego karła o bardzo niskiej masie, z temperaturą powierzchni 8200 st. C i masą zaledwie 17% masy Słońca.

Kiedy gwiazda o masie podobnej do Słońca lub mniejszej osiągnie koniec swojego życia, zabraknie jej wodoru wykorzystywanego do napędzania syntezy jądrowej. Przez pewien czas hel przejmuje kontrolę i zasila gwiazdę, powodując jej kurczenie się i rozgrzewanie, co z kolei prowadzi do jej ekspansji i ewolucji w czerwonego olbrzyma o rozmiarach setek milionów kilometrów. W końcu zewnętrzne warstwy tej spuchniętej gwiazdy mogą zostać zakumulowane na jej towarzyszu, a synteza jądrowa zostaje zatrzymana, pozostawiając po sobie białego karła o rozmiarach Ziemi, skwierczącego w temperaturze przekraczającej 100 000 st. C.

Proto-biały karzeł w układzie 4FGL J1120.0-2204 nie zakończył jeszcze ewolucji. Obecnie jest rozdęty i ma około pięć razy większy promień niż normalne białe karły o podobnych masach – mówi Swihart. Będzie kontynuował ochładzanie i kurczenie się, i za około dwa miliardy lat będzie wyglądał identycznie, jak wiele innych białych karłów o ekstremalnie niskiej masie, które już znamy.

Pulsary milisekundowe wirują setki razy na sekundę. Są one rozkręcane przez akrecję materii od towarzysza, w tym przypadku od gwiazdy, która stała się białym karłem. Większość pulsarów milisekundowych emituje promieniowanie gamma i rentgenowskie, często wtedy, gdy wiatr pulsara, który jest strumieniem naładowanych cząstek emitowanych z wirującej gwiazdy neutronowej, zderza się z materią emitowaną z gwiazdy towarzyszącej.

Znanych jest około 80 białych karłów o ekstremalnie niskiej masie, ale jest to pierwszy prekursor białego karła o ekstremalnej masie, który prawdopodobnie krąży wokół gwiazdy neutronowej – mówi Swihart. W związku z tym, 4FGL J1120.0-2204 umożliwia unikalne spojrzenie na koniec tego procesu rozkręcania. Wszystkie inne odkryte układy podwójne białego karła i pulsara już dawno przekroczyły fazę rozkręcania się.

Opracowanie:
Agnieszka Nowak

Źródło:
NOIRLab
arXiv

Vega

Na ilustracji: Wizja artystyczna ewoluującego układu podwójnego białego karła i pulsara milisekundowego. Źródło: NOIRLab/NSF/AURA/J. da Silva/Spaceengine. Podziękowania: M. Zamani (NSF's NOIRLab).


Załączniki:
noirlab2202a.jpg
noirlab2202a.jpg [ 134.63 KiB | Przeglądany 4362 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 16 stycznia 2022, 19:42 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Znaleziono najjaśniejszą supernową świecącą w promieniach X

Odkryto kolejnego członka nowej klasy wybuchów supernowych – najjaśniejszą z nich zaobserwowaną w promieniach rentgenowskich. Nowe zdarzenie, nazwane AT2020mrf, jest dopiero piątą odkrytą do tej pory supernową należącą do klasy tzw. „Krowy”. Nazwa grupy pochodzi od pierwszej supernowej odkrytej w tej klasie, AT2018cow, której przypadkowo wygenerowana nazwa składała się ze słowa „krowa” (ang. cow).

Co kryje się za tymi niezwykłymi eksplozjami? Nowe dowody wskazują albo na aktywne czarne dziury, albo na gwiazdy neutronowe.

Kiedy masywna gwiazda eksploduje, pozostawia po sobie albo czarną dziurę, albo martwą pozostałość gwiazdową zwaną gwiazdą neutronową. Zazwyczaj te pozostałości gwiazdowe są stosunkowo nieaktywne i spowite materią wyrzuconą podczas eksplozji. Jednak według Yuhan Yao, studentki Caltech i współautorki artykułu, zdarzenia podobne do Krowy mają w swoich jądrach bardzo aktywne, i w większości odsłonięte, zwarte obiekty, które emitują wysokoenergetyczne promieniowanie rentgenowskie.

Możemy zajrzeć do serca tych eksplozji, aby bezpośrednio obserwować narodziny czarnych dziur i gwiazd neutronowych – mówi Yao, zauważając, że supernowe nie są zasłonięte przez materię.

Pierwsze zdarzenie Krowy, AT2018cow, zszokowało astronomów, gdy zostało odkryte w 2018 roku: gwiezdna eksplozja była 10 razy jaśniejsza w świetle widzialnym niż typowe supernowe i szybciej gasła. Wydzielała również dużą ilość wysoce zmiennego promieniowania X, co doprowadziło astronomów do przekonania, że po raz pierwszy byli bezpośrednimi świadkami narodzin czarnej dziury lub gwiazdy neutronowej.

Innym czynnikiem wyróżniającym Krowy jest to, że wyrzucają one stosy masy zanim wybuchną, a masa ta zostaje oświetlona później, po eksplozji. Kiedy gwiazdy wybuchają, generują fale uderzeniowe, które, jak się uważa, przebijają się przez wcześniejszą materię, powodując świecenie w promieniach radiowych i falach milimetrowych.

AT2020mrf jest pierwszą, która została odkryta początkowo w promieniach X, a nie w świetle widzialnym. Yao i jej koledzy zauważyli to zdarzenie w lipcu 2020 roku korzystając z danych rentgenowskich rosyjsko-niemieckiego teleskopu Spektrum-Roentgen-Gamma (SRG). Sprawdzili oni obserwacje wykonane w świetle optycznym przez Zwicky Transient Facility (ZTF), który działa w Obserwatorium Palomar, i odkryli, że ZTF również zauważył to zdarzenie.

Dane SRG wskazują, że eksplozja ta początkowo świeciła 20-krotnie większym natężeniem promieniowania X niż oryginalne zdarzenie Krowy. Dane przechwycone rok później przez Kosmiczny Teleskop Chandra pokazały, że eksplozja nie tylko nadal świeciła, ale promieniowała z 200 razy większym natężeniem rentgenowskim niż ta wykryta w podobnym czasie w przypadku oryginalnego zdarzenia Krowy.

Astronomowie twierdzą, że intensywne promieniowanie rentgenowskie musi być napędzane przez „centralny silnik” znajdujący się w gruzach supernowej.

Duża ilość uwolnionej energii i szybka zmienność rentgenowska obserwowana w AT2020mrf dostarczają silnych dowodów na to, że natura centralnego silnika to albo czarna dziura, albo szybko wirująca gwiazda neutronowa, zwana magnetarem – mówi Yao. W zdarzeniach podobnych do Krowy wciąż nie wiemy, dlaczego centralny silnik jest tak aktywny, ale prawdopodobnie ma coś wspólnego z tym, że typ gwiazdy będącej progenitorem różni się od normalnych eksplozji.

Yao twierdzi, że ponieważ zdarzenie to nie wyglądało dokładnie tak, jak pozostałe cztery, ta nowa klasa supernowych jest bardziej zróżnicowana niż początkowo sądzono. Znalezienie większej liczby członków tej klasy pomoże nam zawęzić obszar poszukiwań źródła ich mocy – dodaje.

Opracowanie:
Agnieszka Nowak

Źródło:
Caltech

Urania

Na ilustracji: Grafika porównująca normalną supernową z supernową klasy Krowa. Źródło: Bill Saxton, NRAO/AUI/NSF.


Załączniki:
Supernova-FastBlueOpticalTransient-RV-WEB.max-1400x800.jpg
Supernova-FastBlueOpticalTransient-RV-WEB.max-1400x800.jpg [ 77.92 KiB | Przeglądany 4333 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 17 stycznia 2022, 19:18 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
„Mała” supermasywna czarna dziura może zawierać wskazówki dotyczące tego, jak te olbrzymy powstają

Odkrycie supermasywnej czarnej dziury w stosunkowo małej galaktyce może pomóc astronomom rozwikłać tajemnicę związaną z tym, jak rosną największe czarne dziury.

Naukowcy wykorzystali teleskop Chandra, aby zidentyfikować czarną dziurę mającą około 200 000 razy więcej masy niż Słońce, zagrzebaną w gazie i pyle w galaktyce MRK 462.

MRK 462 zawiera zaledwie kilkaset milionów gwiazd, co czyni ją galaktyką karłowatą. Dla porównania, nasza Droga Mleczna posiada kilkaset miliardów gwiazd. Jest to jeden z pierwszych przypadków, gdy silnie przesłonięta supermasywna czarna dziura została znaleziona w galaktyce karłowatej.

Ta czarna dziura w MRK 462 należy do najmniejszych z supermasywnych czarnych dziur – mówi Jack Parker z Dartmouth College w New Hampshire, który kierował badaniami wraz z kolegą Ryanem Hickoxem, również z Dartmouth. Czarne dziury takie, jak ta są niezwykle trudne do znalezienia.

W większych galaktykach astronomowie często odnajdują czarne dziury szukając gwałtownych ruchów gwiazd w galaktycznych centrach. Jednakże, galaktyki karłowate są zbyt małe i słabe, aby większość obecnych instrumentów mogła to wykryć. Inną techniką jest poszukiwanie śladów rosnących czarnych dziur, takich jak gaz rozgrzewający się do milionów stopni i świecących w promieniach X podczas jego opadania w kierunku czarnej dziury.

Badacze wykorzystali Chandrę do przyjrzenia się ośmiu galaktykom karłowatym, które wcześniej wykazywały oznaki wzrostu czarnej dziury na podstawie danych optycznych zebranych Sloan Digital Sky Survey. Z tych ośmiu tylko MRK 462 wykazała rentgenowską sygnaturę rosnącej czarnej dziury.

Niezwykle duża intensywność wysokoenergetycznego promieniowania rentgenowskiego w porównaniu z niskoenergetycznym promieniowaniem X, wraz z porównaniami z danymi dla innych długości fal, wskazuje, że czarna dziura MRK 462 jest silnie przesłonięta przez gaz.

Ponieważ przesłonięte czarne dziury są jeszcze trudniejsze do wykrycia niż te odsłonięte, znalezienie tego przykładu może oznaczać, że jest tam znacznie więcej galaktyk karłowatych z podobnymi czarnymi dziurami – powiedział Hickox. Jest to ważne, ponieważ może nam pomóc w rozwiązaniu ważnego pytania w astrofizyce: w jaki sposób czarne dziury stały się tak duże tak wcześnie we Wszechświecie?

Poprzednie badania wykazały, że czarne dziury mogą urosnąć do miliarda mas Słońca w czasie, gdy Wszechświat ma mniej niż miliard lat, czyli niewielki ułamek jego obecnego wieku. Jednym z pomysłów jest to, że te olbrzymie obiekty powstały, gdy masywne gwiazdy zapadały się, tworząc czarne dziury, które ważyły tylko około 100 mas Słońca. Prace teoretyczne mają jednak trudności z wyjaśnieniem, w jaki sposób mogły one przybrać na wadze na tyle szybko, by osiągnąć rozmiary obserwowane we wczesnym Wszechświecie.

Alternatywnym wyjaśnieniem jest to, że wczesny Wszechświat został zasiany czarnymi dziurami mającymi w czasie powstania dziesiątki tysięcy mas Słońca – być może w wyniku zapadnięcia się olbrzymich obłoków gazu i pyłu.

Duży odsetek galaktyk karłowatych z supermasywnymi czarnymi dziurami przemawia za tym, że małe nasiona czarnych dziur z najwcześniejszych generacji gwiazd rosły zadziwiająco szybko, tworząc obiekty o masie miliarda Słońc we wczesnym Wszechświecie. Mniejsza frakcja przechyliłaby szalę na korzyść idei, że czarne dziury rozpoczęły życie mając masę dziesiątek tysięcy Słońc.

Oczekiwania te mają zastosowanie, ponieważ warunki niezbędne do bezpośredniego zapadnięcia się olbrzymiego obłoku do średniej wielkości czarnej dziury powinny być rzadkie, więc nie oczekuje się, że duża część galaktyk karłowatych będzie zawierać supermasywne czarne dziury. Z drugiej strony, czarne dziury o masie gwiazdowej są spodziewane w każdej galaktyce.

Nie możemy wyciągnąć mocnych wniosków na podstawie jednego przykładu, ale ten wynik powinien zachęcić do znacznie szerszych poszukiwań ukrytych czarnych dziur w galaktykach karłowatych – powiedział Parker.

Opracowanie:
Agnieszka Nowak

Źródło:
Chandra

Vega

Na ilustracji: Grupa galaktyk HCG 068, w której znajduje się galaktyka karłowata MRK 462. Źródło: Promieniowanie X: NASA/CXC/Dartmouth Coll./J. Parker & R. Hickox; Optyczne/podczerwień: Pan-STARRS.


Załączniki:
mrk462.jpg
mrk462.jpg [ 203.32 KiB | Przeglądany 4329 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 18 stycznia 2022, 18:42 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Modelowanie struktury i dynamiki żelazowych wnętrz egzoplanet

Odkrycie ponad 4500 egzoplanet stworzyło potrzebę modelowania struktury i dynamiki ich wnętrza. Jak się okazało, kluczową rolę odgrywa w tym żelazo.

Zespół naukowców wykorzystał lasery w National Ignition Facility do eksperymentalnego określenia krzywej topnienia pod wysokim ciśnieniem i właściwości strukturalnych czystego żelaza do 1000 GPa (prawie 10 000 000 atmosfer), czyli trzy raz większego ciśnienia niż panuje w wewnętrznym jądrze Ziemi i prawie cztery razy większego, niż jakiekolwiek wcześniejsze eksperymenty.

Naukowcy przeprowadzili serię eksperymentów, które naśladują warunki obserwowane przez działkę żelaza opadającą w kierunku centrum jądra superziemi.

Samo bogactwo żelaza we wnętrzach planet skalistych sprawia, że konieczne jest zrozumienie właściwości i reakcji żelaza w ekstremalnych warunkach panujących głęboko w jądrach masywnych planet podobnych do Ziemi – powiedział Rick Kraus, fizyk Lawrence Livermore National Laboratory (LLNL) i główny autor pracy. Krzywa topnienia żelaza jest krytyczna dla zrozumienia wewnętrznej struktury, ewolucji termicznej, jak również potencjału dynamicznie generowanych magnetosfer.

Uważa się, że magnetosfera jest ważnym składnikiem zdatnych do zamieszkania planet skalistych, tak jak to jest na Ziemi. Ziemskie dynamo magnetyczne jest generowane w zewnętrznym jądrze konwekcyjnym ciekłym żelaznym otaczającym wewnętrzne jądro z litego żelaza i jest zasilane przez ciepło utajone uwalniane podczas krzepnięcia żelaza.

Ze względu na duże znaczenie żelaza w planetach typu ziemskiego, dokładne i precyzyjne właściwości fizyczne w ekstremalnych ciśnieniach i temperaturach są niezbędne do przewidywania tego, co dzieje się w ich wnętrzach. Pierwszorzędną właściwością żelaza jest temperatura topnienia, która wciąż podlega dyskusji w odniesieniu do warunków panujących we wnętrzu Ziemi. Krzywa topnienia jest największym przejściem reologicznym, jakiemu może ulec materiał, od materiału o dużej wytrzymałości do takiego, który jej nie posiada. W tym miejscu ciało stałe zamienia się w ciecz, a temperatura jest zależna od ciśnienia żelaza.

Dzięki eksperymentom, zespół określił długość działania dynamo podczas krzepnięcia jądra do sześciokątnej, ciasno upakowanej struktury w egzoplanetach typu superziemia.

Stwierdziliśmy, że ziemskie egzoplanety o masie 4-6 razy większej od ziemskiej, będą miały najdłuższe dynama, które zapewniają ważną osłonę przed promieniowaniem kosmicznym – powiedział Kraus.

I dodaje: Poza naszym zainteresowaniem w zrozumieniu możliwości zdatności do zamieszkania egzoplanet, technika, którą opracowaliśmy dla żelaza będzie w przyszłości stosowana do materiałów o większym znaczeniu programowym, w tym do programu Stockpile Stewardship Program.

Krzywa topnienia jest niezwykle czułym ograniczeniem dla modelu równania stanu.

Zespół uzyskał również dowody na to, że kinetyka krzepnięcia w tak ekstremalnych warunkach jest szybka – przejście z cieczy w ciało stałe zajmuje zaledwie nanosekundy, co pozwoliło zespołowi obserwować równowagową granicę faz. Ten eksperymentalny wgląd poprawia nasze modelowanie zależnej od czasu reakcji materiału dla wszystkich materiałów – powiedział Kraus.

Opracowanie:
Agnieszka Nowak

Źródło:
LLNL

Vega

Na ilustracji: Wizualizacja przekroju poprzecznego superziemi z komorą National Ignition Facility nałożoną na płaszcz, patrząc w głąb jądra. Źródło: Johna Jetta/LLNL.


Załączniki:
earth_core_850x500.jpg
earth_core_850x500.jpg [ 516.81 KiB | Przeglądany 4309 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 19 stycznia 2022, 21:30 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Ewolucja galaktyki: kosmiczny romans zapisany w gwiazdach

Międzynarodowy zespół astronomów wykonał krok naprzód w zrozumieniu ewolucji galaktyk, a tym samym opowiedział historię zapisaną w niebie.

Przez długi czas pozostawało tajemnicą, w jaki sposób niektóre galaktyki spiralne pozyskały swoją centralną czarną dziurę. Dzięki połączeniu obserwacji w zakresie promieniowania widzialnego i rentgenowskiego, astronomowie odkryli ślady tego, co prawdopodobnie było kiedyś małą galaktyką w kształcie kuli, która wpadła do galaktyki spiralnej i dostarczyła czarną dziurę mającą rozmiar uważany za odpowiedni.

Podobieństwo to nie umknęło uwadze głównego autora nowych badań, profesora Alistera Grahama z Centrum Astrofizyki i Superkomputerów w Swinburne.

Galaktyki mogą się wzajemne (grawitacyjnie) do siebie przyciągać. Ciało mniejszej galaktyki może z czasem zanikać, ale jej serce pozostaje nienaruszone, gdy wpada do większej galaktyki i staje się jej partnerem.

W tym przypadku sercem jest licząca milion gwiazd gromada, widziana dzięki Kosmicznemu Teleskopowi Hubble’a w pobliżu centrum galaktyki spiralnej NGC 4424.

Już wcześniej wiadomo było, że NGC 4424 wykazuje oznaki aktywności związane z minionym zdarzeniem połączenia. Mniej niż 500 milionów lat temu miało tam miejsce zdarzenie formowania się gwiazd. Wydaje się to być ważnym odkryciem dla zrozumienia wspólnej ewolucji czarnych dziur i galaktyk.

Jest to pierwsza galaktyka spiralna, w której znaleziono masywną czarną dziurę. Odkrycie to przyczynia się do lepszego zrozumienia, w jaki sposób czarne dziury powstają wewnątrz galaktyk spiralnych.

Astronomowie nieformalnie nazwali tę gromadę gwiazd „Nikhuli”. Słowo to pochodzi od plemienia Sumi z indyjskiego stanu Nagaland i oznacza okres świąteczny, w którym potomkowie łowców głów świętują i życzą sobie obfitych zbiorów. Słowo to wydało się astronomom odpowiednie, gdyż przestrzeń kosmiczną nazywają „polem” a ich odkrycie skupia się na tym, jak większa galaktyka zebrała plony z mniejszej galaktyki.

Co pokazują nam zdjęcia rentgenowskie
Profesor Roberto Soria z Chińskiej Akademii Nauk i współautor pracy, uzyskał zdjęcie z teleskopu Chandra pokazujące wysokoenergetyczne źródło promieniowania rentgenowskiego emanujące z rozciągniętej gromady gwiazd widocznej na zdjęciu z HST.

Prawdopodobnie obserwujemy aktywność wokół czarnej dziury w tym, co było centralnie położoną gromadą gwiazd w zapadającej się galaktyce – mówi Soria.

Chociaż znajduje się w odległości 50 milionów lat świetlnych, każdy metr kwadratowy Ziemi skąpany jest w promieniach rentgenowskich pochodzących z tej aktywnej czarnej dziury mniej więcej co 80 sekund. Gorący punkt promieniowania X znajduje się zaledwie 1300 lat świetlnych od centrum NGC 4424, galaktyki o średnicy około 60 000 lat świetlnych.

Główne ciało mniejszej galaktyki, w którym kiedyś znajdowała się gromada gwiazd, teraz przyczynia się do powstania wewnętrznego „zgrubienia” gwiazd powyżej i poniżej dysku galaktyki spiralnej, które zawiera poprzeczkę i spiralny wzór.

Rozszerzanie naszej wiedzy o Wszechświecie
Według najlepszych szacunków zespołu, masa czarnej dziury jest siedemdziesiąt tysięcy razy większa od masy naszego Słońca. Taka masa czyni z niej kandydatkę do w dużej mierze brakującej populacji czarnych dziur o masie pośredniej, czyli takich, które mają masy większe niż gwiazdy i mniejsze niż supermasywne czarne dziury znane z rezydowania w centrach olbrzymich galaktyk, takich jak M87, słynącej jako pierwsze w historii zdjęcie czarnej dziury, wykonane przez Teleskop Horyzontu Zdarzeń.

To samo w sobie jest ekscytujące – mówi Graham. Co więcej, ta masa jest na równi z tą, której można się spodziewać w centrum NGC 4424.

Być może jesteśmy świadkami mechanizmu dostarczania czarnych dziur do galaktyk spiralnych – mówi dr Ben Davis, współautor pracy z kampusu New York University w Abu Dhabi.

Co więcej, potencjalne kolizje z innymi czarnymi dziurami sprawiają, że jest to idealne miejsce do emisji fal grawitacyjnych o dużej długości, falujących w przestrzeni kosmicznej – mówi Davis.

Następny krok
Profesor Graham, profesor Soria i dr Davis są zdeterminowani, aby znaleźć więcej galaktyk zapadających się, które zawierają w swoim wnętrzu czarne dziury, by mogli odpowiedzieć na pytanie, jak czarne dziury powstają w galaktykach spiralnych.

Profesor Graham i dr Ben Davis są również członkami konsorcjum LISA (Laser Interferometer Space Antenna), którego anteny, wraz z chińską misją kosmiczną TianQin (天琴计划) pracują nad odkryciem zdarzeń związanych ze zderzeniami dużych czarnych dziur.

Opracowanie:
Agnieszka Nowak

Źródło:
Swinburne University

Vega

Na ilustracji: Obraz galaktyki spiralnej NGC 4424 z zaznaczoną gromadą Nikhuli. Źródło: NASA/ESA, Or Graur (University of Portsmouth), Adam Riess (Johns Hopkins University), Lisa Frattare (Space Telescope Science Institute)/NASA/ESA, Bogdan Ciambur (Paris Observatory), Alister Graham (Swinburne University of Technology).


Załączniki:
cq5dam.web.1280.1280.jpg
cq5dam.web.1280.1280.jpg [ 108.13 KiB | Przeglądany 4194 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 20 stycznia 2022, 20:34 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Badanie magnetosferycznego pochodzenia szybkich błysków radiowych

Astronomowie zaczynają docierać do źródeł szybkich błysków radiowych – potężnych, ulotnych błysków fal radiowych obserwowanych w odległościach pozagalaktycznych. Silnie namagnesowane gwiazdy neutronowe, zwane magnetarami, mogą być odpowiedzialne za wiele z tych odległych zdarzeń, ale jak dokładnie te ekstremalne obiekty generują szybkie błyski radiowe?

Kosmiczna zagadka
Zagadka, skąd pochodzą szybkie błyski radiowe (FRB), w każdym razie niektóre z nich, wydawała się być rozwiązana, gdy okazało się, że pierwszy rozbłysk radiowy w Drodze Mlecznej pochodzi od magnetara – skrajnie gęstej pozostałości gwiazdowej o polu magnetycznym około 100 miliardów do 10 bilionów razy silniejszym niż typowy magnes na lodówce. Ale jak to często bywa w astrofizyce, rozwiązanie tej zagadki pociągnęło za sobą wiele innych: w jaki sposób magnetary generują te silne, krótkie wybuchy fal radiowych i czy powstają one w pobliżu powierzchni magnetara, czy z otaczającej go materii?

W artykule opublikowanym 19 stycznia 2022 roku Andriej Beloborodov (Uniwersytet Columbia i Instytut Astrofizyki Maxa Plancka, Niemcy) badał, czy FRB wygenerowany blisko powierzchni magnetara może wydostać się z jego magnetosfery – obszaru przestrzeni, w którym naładowane cząsteczki uginają się pod wpływem intensywnego pola magnetycznego magnetara.

Modele magnetara
Magnetosfery mają olbrzymie znaczenie w naszym Układzie Słonecznym – magnetosfera Ziemi chroni nas przez energetycznymi cząstkami generowanymi przez Słońce, a magnetosfera Jowisza zdominowałaby niebo, gdyby nasz wzrok był przystosowany do widzenia fal radiowych. Magnetosfera magnetara jest jednak o wiele dziwniejsza niż te pobliskie przykłady; namagnesowana gwiazda neutronowa w centrum generuje plazmę elektronów i ich dodatnio naładowanych odpowiedników, pozytonów, które wypełniają magnetosferę i mogą zapobiec ucieczce w przestrzeń kosmiczną błysków radiowych generowanych w pobliżu powierzchni magnetara.

Beloborodov wykorzystał równania fizyki plazmy, aby zrozumieć, jak błysk radiowy może oddziaływać z naładowanymi cząstkami i polami magnetycznymi w magnetosferze magnetara. Gdy błysk radiowy przemieszcza się na zewnątrz, ściska magnetosferę, przenosząc swój pęd na pola magnetyczne i plazmę. Oscylujące elektrony i pozytony emitują promienie gamma, które mogą się zderzyć i wytworzyć jeszcze więcej elektronów i pozytonów – tworząc kaskadę cząstek i promieni gamma, które rozpraszają falę radiową i pozbawiają ją energii. Dla fali radiowej nie ma ucieczki; Beloborodov odkrył, że jest bardzo mało prawdopodobne, aby szybki błysk radiowy mógł uciec przed magnetosferą, gdyby została wygenerowana w odległości 100 000 km od powierzchni magnetara.

Więcej do nauczenia się
Podczas gdy wyniki badań Beloborodova wykluczają możliwość powstania szybkich błysków radiowych w wewnętrznej magnetosferze, istnieją inne sposoby, na jakie magnetary mogą być źródłem takich zjawisk. Inna możliwość jest taka, że FRB powstają znacznie dalej od magnetara, gdzie błyski magnetosferyczne zdarzają się z wiatrem wypływającym z magnetara.

Na szczęście kanadyjski eksperyment CHIME (Canadian Hydrogen Intensity Mapping Experiment) jest gotowy, aby dodać nowe obserwacje do istniejącego katalogu setek szybkich błysków radiowych, co pomoże nam zrozumieć źródła tych tajemniczych zdarzeń i skomplikowaną fizykę, która za nimi stoi.

Opracowanie:
Agnieszka Nowak

Źródło:
AAS

Vega

Na ilustracji: Wizja artystyczna magnetara, gwiazdy neutronowej z silnym polem magnetycznym. Źródło: ESA.


Załączniki:
Illustration_of_a_magnetar_pillars.jpg
Illustration_of_a_magnetar_pillars.jpg [ 140.22 KiB | Przeglądany 3944 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 21 stycznia 2022, 19:19 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Astronomowie znajdują paliwo gwiazdowe otaczające galaktyki

Większość galaktyk, w tym nasza własna, rośnie poprzez gromadzenie nowej materii i przekształcanie jej w gwiazdy – tyle wiemy. Nie wiadomo natomiast, skąd pochodzi ta nowa materia i w jaki sposób wpływa do galaktyk, tworząc gwiazdy.

W niedawno opublikowanych badaniach, astronom z Arizona State University Sanchayeeta Borthakur zidentyfikowała słabe zbiorniki paliwa, które otaczają galaktyki, oraz to, w jaki sposób to paliwo może wpadać do galaktyk, pozwalając im na formowanie nowych gwiazd i układów planetarnych. Jej badania zostały opublikowane w „Astrophysical Journal” Amerykańskiego Towarzystwa Astronomicznego.

Wcześniejsze badania w dziedzinie formowania się gwiazd sugerowały, że niektóre galaktyki produkują więcej gwiazd niż pozwala na to zapas gazu gwiazdotwórczego. Dla Borthakur sugerowało to, że nowy gaz musi napływać do galaktyk i wspierać formowanie się nowych gwiazd i planet.

Aby określić, skąd może pochodzić gaz, Borthakur wykorzystała metodę statystyczną zwaną korelacją krzyżową (do pomiaru związków pomiędzy dwiema wielkościami) oraz dane z dwóch publicznie dostępnych katalogów astronomicznych: ALFALFA z teleskopu Arecibo oraz Survey of the Low-Redshift Intergalactic Medium z Cosmic Origins Spectrograph Kosmicznego Teleskopu Hubble'a. Dzięki tym danym była w stanie określić, w jaki sposób galaktyki bogate w gaz są powiązane z obłokami widocznymi w ośrodku międzygalaktycznym.

W kolejnych krokach Borthakur ma nadzieję zidentyfikować drogi, którymi te obłoki gazu mogą dotrzeć do wewnętrznych obszarów galaktyk, gdzie powstają gwiazdy.

Galaktyki takie jak nasza będą nadal rosły tworząc wiele więcej układów słonecznych w miarę napływu nowej materii – mówi Borthakur. Zrozumienie źródła paliwa gwiazdowego pozwala nam przewidzieć, czy w przyszłości będą powstawały nowe gwiazdy.

Opracowanie:
Agnieszka Nowak

Źródło:
ASU

Vega

Na ilustracji: Ilustracja słabych zbiorników paliwa, które otaczają galaktyki, umożliwiając im formowanie nowych gwiazd i układów planetarnych. Obraz autorstwa Shireen Dooling/ASU.


Załączniki:
galaxy-close-up_final.jpg
galaxy-close-up_final.jpg [ 706.85 KiB | Przeglądany 3931 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 22 stycznia 2022, 19:42 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Pierwsze potwierdzenie połączenia czarnych dziur o wysoce ekscentrycznych orbitach

Po raz pierwszy naukowcy uważają, że udało im się wykryć połączenie dwóch czarnych dziur o ekscentrycznych orbitach. Według pracy opublikowanej w Nature Astronomy przez naukowców z Rochester Institute of Technology's Center for Computational Relativity and Gravitation (CCRG) oraz University of Florida, może to pomóc wyjaśnić, dlaczego niektóre połączone czarne dziury wykryte przez LIGO Scientific Collaboration i Virgo Collaboration, są znacznie cięższe niż wcześniej sądzono.

Ekscentryczne orbity są oznaką, że czarne dziury mogą wielokrotnie pochłaniać inne podczas przypadkowych spotkań w obszarach gęsto zaludnionych czarnymi dziurami, takich jak centra galaktyk. Naukowcy zbadali najmasywniejszą zaobserwowaną do tej pory falę grawitacyjną, od podwójnej czarnej dziury, GW190521, aby określić, czy miały one ekscentryczne orbity.

Ocenia się, że każda z tych czarnych dziur ma masy ponad 70 razy większe od naszego Słońca, co stawia je znacznie powyżej szacowanej maksymalnej masy przewidywanej obecnie przez teorię ewolucji gwiazd – powiedział Carlos Lousto, profesor w School of Mathematical Sciences i członek CCRG. To czyni interesujący przypadek do badania jako układ podwójnych czarnych dziur drugiej generacji i otwiera na nowo możliwości scenariuszy formowania się czarnych dziur w gęstych gromadach gwiazd.

Zespół naukowców z RIT przejrzał dane, aby sprawdzić, czy czarne dziury miały bardzo ekscentryczne orbity zanim się połączyły. Odkryli, że połączenie to jest najlepiej wyjaśnione przez model precesji o wysokiej ekscentryczności. Aby to osiągnąć, zespół przeprowadził setki nowych, pełnych symulacji numerycznych na lokalnych i krajowych superkomputerach laboratoryjnych, co zajęło prawie rok.

Stanowi to duży postęp w naszym rozumieniu tego, jak czarne dziury łączą się ze sobą – powiedziała Manuela Campanelli, profesor i dyrektor CCRG. Dzięki naszym wyrafinowanym symulacjom na superkomputerach i bogactwu nowych danych dostarczanych przez LIGO i szybko rozwijające się detektory Virgo, dokonujemy nowych odkryć na temat Wszechświata w zdumiewającym tempie.

Rozszerzenie tej analizy przez ten sam zespół wykorzystywało możliwy elektromagnetyczny odpowiednik obserwowany przez Zwicky Transient Facility do niezależnego obliczenia kosmologicznej stałej Hubble’a dla GW190521 jako połączenia dwóch czarnych dziur o ekscentrycznych orbitach. Wykazali oni doskonałą zgodność z oczekiwanymi wartościami i niedawno opublikowali swoją pracę w Astrophysical Journal.

Opracowanie:
Agnieszka Nowak

Źródło:
RIT

Vega

Na ilustracji: Wizja artystyczna dwóch czarnych dziur, które mają się zderzyć. Źródło: Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav).


Załączniki:
scr00027.jpg
scr00027.jpg [ 183.74 KiB | Przeglądany 3917 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 23 stycznia 2022, 20:44 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Astronomowie dostrzegają młode dwubiegunowe strumienie gwiazdowe

Astronomowie zaobserwowali meandrujące dwubiegunowe strumienie gwiazdowe z młodych gwiazd, wykorzystując do tego optykę adaptatywną.

Faliste strumienie gwiazdowe leniwie wiją się przez pole gwiazd na nowych zdjęciach uchwyconych z Chile przez Obserwatorium Gemini. Delikatnie zakrzywiające się gwiazdowe strumienie są wypływem z młodych gwiazd, a astronomowie podejrzewają, że ich wygląd wywołany jest przyciąganiem grawitacyjnym towarzyszących im gwiazd. Te doskonałe obrazy zostały wykonane przy użyciu systemu optyki adaptacyjnej teleskopu Gemini South, który pomaga astronomom przeciwdziałać efektom rozmycia spowodowanym przez turbulencje atmosferyczne.

Strumienie młodych gwiazd są powszechnym produktem ubocznym formowania się gwiazd i uważa się, że powstają w wyniku wzajemnego oddziaływania pomiędzy polami magnetycznymi rotujących młodych gwiazd, a otaczającymi je dyskami gazu. Oddziaływania te powodują wyrzucanie podwójnych strumieni zjonizowanego gazu w przeciwnych kierunkach, tak jak widać na zdjęciach wykonanych przez teleskop Gemini.

Jeden ze strumieni, nazwany MHO 2147, znajduje się około 10 000 lat świetlnych od Ziemi i leży w płaszczyźnie galaktycznej Drogi Mlecznej, blisko granicy pomiędzy gwiazdozbiorami Strzelca i Wężownika. Na zdjęciu MHO 2147 wije się w poprzek gwiezdnego tła – ma odpowiednio wężowaty wygląd dla obiektu znajdującego się blisko Wężownika. Jak wiele z 88 współczesnych gwiazdozbiorów, Wężownik ma mitologiczne korzenie – w starożytnej Grecji przedstawiał on różnych bogów i bohaterów zmagających się z wężem. Drugi strumień, MHO 1502, znajduje się w gwiazdozbiorze Żagla, w odległości około 2000 lat świetlnych.

Większość strumieni gwiazdowych jest prosta, ale niektóre mogą być kręte lub splątane. Uważa się, że kształt niektórych strumieni jest związany z cechą obiektu lub obiektów, które je utworzyły. W przypadku dwóch dwubiegunowych strumieni MHO 2147 i MHO 1502, gwiazdy, które je utworzyły, są niewidoczne.

W przypadku MHO 2147, ta młoda gwiazda centralna, zwana IRAS 17527-2439, jest osadzona w ciemnym obłoku w podczerwieni – zimnym, gęstym regionie gazu, który jest nieprzeźroczysty w zakresie długości fal podczerwieni. Sinusoidalny kształt MHO 2147 jest spowodowany tym, że kierunek strumieni zmienił się w czasie, kreśląc łagodne krzywe po obu stronach gwiazdy centralnej. Te prawie nieprzerywane krzywe sugerują, że MHO 2147 została wyrzeźbiona przez ciągłą emisję z jej centralnego źródła. Astronomowie odkryli, że zmieniający się kierunek (precesja) strumienia może być wywołana grawitacyjnym wpływem pobliskich gwiazd oddziałujących na gwiazdę centralną. Ich obserwacje sugerują, że IRAS 17527-2439 może należeć do układu podwójnego gwiazd, oddzielonego od siebie o ponad 300 miliardów kilometrów.

MHO 1502 jest osadzony w zupełnie innym środowisku – obszarze formowania się gwiazd, znanym jako obszar H II. Dwubiegunowy strumień składa się z łańcucha węzłów, co sugeruje, że jego źródło, uważane za dwie gwiazdy, emitowało materię w sposób przerywany.

Opracowanie:
Agnieszka Nowak

Źródło:
NOIRLab
Astronomy&Astrophysics

Vega

Na ilustracji: Wijący się strumień młodej gwiazdy, MHO 2147. Źródło: International Gemini Observatory/NOIRLab/NSF/AURA.


Załączniki:
noirlab2204a.jpg
noirlab2204a.jpg [ 316.8 KiB | Przeglądany 3899 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 26 stycznia 2022, 22:00 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Nowe badania dostarczają wiedzy na temat interakcji między parami galaktyk

Łączenie się galaktyk jest jednym z krytycznych etapów ich ewolucji, jednak częstość występowania takich par, oraz ich wpływ na ich właściwości fizyczne są dalekie od określenia.

Nowe badania, przeprowadzone przez prof. Y.Sophia Dai z Centrum Astronomii Południowej Ameryki Chińskiej Akademii Nauk (CASSACA) w Narodowym Obserwatorium Astronomicznym Chińskiej Akademii Nauk (NAOC), dostarczają świeżego spojrzenia na to, czy i jak wzajemne oddziaływanie dwóch galaktyk wpływa na ich formowanie się i ewolucję.

Jest to pierwszy przypadek, gdy pary galaktyk z przesunięciem ku czerwieni ~1 zostały potwierdzone kinematycznie dla tak dużej próbki statystycznej” – powiedziała prof. Y.Sophia Dai, główna autorka badania. “W oparciu o sześcioletnie badania z użyciem siatki dyfrakcyjnej Kosmicznego Teleskopu Hubble’a, uzyskaliśmy widma dla ponad 413 układów par z dwoma lub więcej galaktykami członkowskimi, potwierdzając w ten sposób ich wzajemne oddziaływanie.

Spektroskopia z użyciem siatki dyfrakcyjnej HST oferuje pokrycie spektralne w zakresie bliskiej podczerwieni, umożliwiając wykrywanie galaktyk w odległym Wszechświecie oraz kinematyczną weryfikację par galaktyk poprzez pomiar ich dokładnych spektroskopowych przesunięć ku czerwieni (tj. prędkości).

Dzięki tym bezprecedensowym danym, prof. Dai i jej współpracownicy stworzyli największą próbkę par galaktyk z linią emisyjną datowaną na 7 miliardów lat temu.

Odkryli oni, że gdy dwie galaktyki oddziałują na siebie lub łączą się, doświadczają wzrostu tempa powstawania gwiazd o 40%-60%, co sugeruje, że interakcja wywołuje wzrost galaktyk. Ten poziom wzrostu jest porównywalny z tym, co wcześniej znaleziono w naszym lokalnym Wszechświecie, wskazując na podobny wzrost formowania się gwiazd spowodowany interakcjami galaktyk.

Co ciekawe, w przeciwieństwie do zwiększonego wzrostu gwiazd, aktywność w centrum galaktyki (tj. centralnych supermasywnych czarnych dziur) nie wydaje się być znacząco zaburzona przez interakcję. W rzeczywistości odsetek galaktyk z najbardziej aktywnie rosnącymi czarnymi dziurami, często określanymi jako aktywne jądra galaktyk (AGN), jest taki sam w galaktykach znajdujących się w parach i izolowanych galaktykach z linią emisyjną.

Badacze wyznaczyli frakcję galaktyk w parach: w miarę cofania się w czasie, coraz więcej galaktyk z liniami emisyjnymi jest znajdowanych w parach, z łagodnym nachyleniem prawa potęgowego wynoszącym ~0,6.

Dzięki Kosmicznemu Teleskopowi Jamesa Webba oraz Chińskiemu Teleskopowi Stacji Kosmicznej (CSST), który również oferuje spektroskopię z siatką dyfrakcji, będziemy w stanie zidentyfikować jeszcze więcej kinematycznie potwierdzonych par galaktyk z liniami emisyjnymi, aby lepiej zrozumieć ich wpływ na formowanie się galaktyk – powiedziała prof. Dai.

Opracowanie:
Agnieszka Nowak

Źródło:
CAS

Vega

Na ilustracji: Przykład par galaktyk z linią emisyjną. Obraz wykonany przy pomocy kamery 3 Wide Field Camera Teleskopu Kosmicznego Hubble'a. W tej próbce par widoczne są różne morfologie i separacje, największej jak dotąd w z~1. Źródło: Y.Sophia Dai.


Załączniki:
W020220124595267683353.jpg
W020220124595267683353.jpg [ 127.01 KiB | Przeglądany 3852 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 27 stycznia 2022, 21:32 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Tajemnica najjaśniejszych mgławic planetarnych

Najnowsze badania przeprowadzone przez zespół naukowców rozwiązały stałą debatę na temat gwiazd macierzystych najjaśniejszych mgławic planetarnych.

Pierwszą i najważniejszą informacją potrzebną do zrozumienia natury Wszechświata jest poznanie jego rozmiarów, zmierzenie odległości do galaktyk. Tak jak w epoce renesansu ludzie zaczęli określać wielkość Ziemi, położenie mórz i kontynentów, tak dzisiaj mapujemy Wszechświat za pomocą skal odległości, które zostały określone stopniowo, gwiazda po gwieździe, galaktyka po galaktyce.

Jeszcze sto lat temu nie wiedzieliśmy nawet, że galaktyki to układy gwiazd, których są tysiące milionów. Dopiero postęp technologiczny, coraz większe teleskopy i coraz czulsze instrumenty pozwoliły nam badać galaktyki i zaczęliśmy analizować ich poszczególne gwiazdy. Nawet dzisiaj nie możemy badać zwykłych gwiazd, takich jak Słońce, w galaktykach poza naszą własną, ale możemy je badać, gdy ewoluują, a w szczególności te, które stają się mgławicami planetarnymi.

Mgławica planetarna jest gazową otoczką wyrzuconą z gwiazdy, gdy staje się ona czerwonym olbrzymem, co jest fazą krytyczną, w której gwiazda nie jest w stanie utrzymać ciężaru własnej masy, ponieważ spaliła całe swoje najlepsze i najobfitsze paliwo, wodór, i zaczyna zużywać rezerwy helu. W tym momencie jej wewnętrzne jądro pozostaje odsłonięte, a ze względu na bardzo wysoką temperaturę (temperatura powierzchni gwiazdy zmienia się z około 3000 st. C do 100 000 st. C lub więcej w ciągu kilku tysięcy lat), emituje ona prawie całe swoje światło w ultrafiolecie, gwałtownie podgrzewając warstwy gazu, które wyrzuciła, i jonizując je.

Fascynujące jest to, że te otoczki, które nazywamy mgławicami planetarnymi, przekształcają ogromną ilość energii UV gwiazdy w światło widzialne, a głównie w jedną linię emisyjną znajdującą się właśnie tam, gdzie ludzkie oko jest najbardziej czułe, w żółto-zielonej części widma – wyjaśnia Antonio Mampaso, badacz IAC i współautor artykułu. Jest to linia emisyjna podwójnie zjonizowanego tlenu [OIII] 5007 Å.

Według Romano Corradi, dyrektora Gran Telescopio Canarias (GTC) i współautora artykułu, mgławice planetarne są kluczem do zrozumienia chemicznego wzbogacania się Wszechświata, tykaniem, które wyznacza chemiczny postęp ku przyszłości. Ale okazało się również, że mogą być używane jako linijki do pomiaru odległości do galaktyk, ponieważ we wszystkich typach galaktyk (spiralne, eliptyczne, młode i stare galaktyki) wszystkie najjaśniejsze mgławice planetarne mają taką samą jasność wewnętrzną w linii emisyjnej [OIII] 5007 Å i nie przekraczają jej. Ta jednorodność jest tak silną właściwością, że może być używana do mierzenia dystansu do galaktyk do odległości 70 milionów lat świetlnych, a nawet dalej. Naukowcy nie wiedzą jednak, dlaczego najjaśniejsze mgławice planetarne mają jasności, które są bardzo zbliżone do siebie, w okolicach „magicznej” wartości jasności, biorąc pod uwagę różnorodność zachodzących w nich procesów fizycznych.

Standardowe modele teoretyczne przewidują, że maksymalna jasność mgławicy planetarnej powinna być różna w zależności od typu galaktyki, a ponadto, że tak jasne mgławice nie powinny występować w bardzo rozwiniętych układach, ponieważ spodziewamy się, że ich gwiazdy macierzyste są stosunkowo masywne, ponad dwukrotnie masywniejsze od Słońca, dlatego powinny zniknąć z najstarszych układów. Obserwacje zaprzeczają obu tym założeniom.

Zespół astronomów zajął się tą zagadką, wyznaczając z najwyższą możliwą dokładnością parametry fizyczne i chemiczne najjaśniejszych mgławic planetarnych i ich gwiazd macierzystych w najbliższej nam galaktyce spiralnej, galaktyce Andromedy (M31). W tym celu pozyskali bardzo głębokie widma próbki mgławic planetarnych w M31. Wynika z nich, że najjaśniejsze mgławice planetarne są normalnymi mgławicami, o gęstości nieco powyżej średniej, z gwiazdami macierzystymi o masach blisko 1,5 masy Słońca.

Niedawna praca teoretyczna, wykorzystująca najbardziej zaawansowane modele ewolucyjne sugeruje, że gwiazdy o takich masach mogą generować, przynajmniej w ciągu około tysiąca lat, mgławice planetarne tak jasne, jak ta – wskazuje Mampaso. Uzyskane wyniki pokazują, że aby zrozumieć najjaśniejsze mgławice, nie potrzebujemy masywnych gwiazd, mimo, że jest ich wiele w galaktyce takiej jak M31.

Opracowanie:
Agnieszka Nowak

Źródło:
IAC

Vega

Na ilustracji: (Po lewej) Mgławica „Kocie Oko” w naszej Galaktyce. W odległości od galaktyki Andromedy (po prawej) tysiąc razy dalej te mgławice są postrzegane jako „zielone kropki”. Źródło: Romano Corradi.


Załączniki:
collage_M31.jpg
collage_M31.jpg [ 116.49 KiB | Przeglądany 3839 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 29 stycznia 2022, 20:18 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Niezwykła czarna dziura znaleziona w sąsiedniej galaktyce

Astronomowie odkryli czarną dziurę niepodobną do żadnej innej. Przy masie 100 000 mas Słońca jest ona mniejsza niż czarne dziury, które znaleźliśmy w centrach galaktyk, ale większa niż czarne dziury, które powstają podczas eksplozji gwiazd. To czyni ją jedną z niewielu potwierdzonych czarnych dziur o masie pośredniej, obiektu od dawna poszukiwanego przez astronomów.

Mamy bardzo dobre pomiary największych, gwiazdowych czarnych dziur o masie do 100 mas Słońca, oraz supermasywnych czarnych dziur w centrach galaktyk, ale nie ma żadnych pomiarów czarnych dziur pomiędzy nimi. To taka luka, powiedział współautor badania, Anil Seth, profesor nadzwyczajny astronomii na Uniwersytecie w Utah. To odkrycie wypełnia tę lukę.

Czarna dziura ukryta była w B023-G078, ogromnej gromadzie gwiazd w najbliższej nam Galaktyce Andromedy. Długo uważano, że jest to gromada kulista, jednak naukowcy twierdzą, że B023-G078 jest nieosłoniętym jądrem galaktyki. Nieosłonięte jądra są pozostałościami po małych galaktykach, które wpadły do większych, a ich zewnętrzne gwiazdy zostały usunięte przez siły grawitacyjne. To, co pozostało, to maleńkie, gęste jądro krążące wokół większej galaktyki, w którego centrum znajduje się czarna dziura.

Poprzednio znaleźliśmy duże czarne dziury wewnątrz masywnych, nieosłoniętych jąder, które są znacznie większe niż B023-G078. Wiedzieliśmy, że muszą istnieć mniejsze czarne dziury w takich jądrach o niższej masie, ale nigdy nie było bezpośrednich dowodów – powiedziała główna autorka pracy Renuka Pechetti z Liverpool John Moores University, która rozpoczęła badania podczas studiów. Myślę, że jest to dość jasny dowód, że w końcu znaleźliśmy jeden z tych obiektów.

Trwające od dziesięcioleci przeczucie
B023-G078 była znana jako masywna gromada kulista – kulisty zbiór gwiazd ciasno związanych grawitacyjnie. Jednak do tej pory przeprowadzono tylko jedną obserwację tego obiektu, która pozwoliła określić jego całkowitą masę – około 6,2 miliona mas Słońca. Przez lata Seth miał przeczucie, że jest to coś innego.

Dzięki nowym danym obserwacyjnym z Obserwatorium Gemini oraz zdjęciom z Kosmicznego Teleskopu Hubble’a, Pechetti i Seth wraz z zespołem obliczyli, w jaki sposób masa w obiekcie została rozłożona, modelując jego profil światła. Gromada kulista ma charakterystyczny profil światła, który ma taki sam kształt w pobliżu centrum, jak i w regionach zewnętrznych. B023-G078 jest inny. Światło w centrum jest okrągłe, a następnie staje się bardziej płaskie w kierunku na zewnątrz. Zmienia się również skład chemiczny gwiazd, z większą ilością ciężkich pierwiastków w gwiazdach w centrum niż tych bliżej krawędzi obiektu.

Gromady kuliste tworzą gwiazdy w zasadzie w tym samym czasie. Natomiast te z nieosłoniętym jądrem mogą mieć powtarzające się epizody formowania, gdzie gaz wpada do centrum galaktyki i tworzy gwiazdy. A inne gromady gwiazd mogą zostać wciągnięte do centrum przez siły grawitacyjne galaktyki – powiedział Seth. Jest to coś w rodzaju wysypiska śmieci dla wielu różnych rzeczy. Tak więc gwiazdy w nieosłoniętych jądrach będą bardziej skomplikowane niż w gromadach kulistych. I to właśnie zaobserwowaliśmy w B023-G078.

Naukowcy użyli rozkładu masy obiektu, aby przewidzieć, jak szybko powinny poruszać się gwiazdy w danym miejscu w gromadzie i porównali to z danymi obserwacyjnymi. Gwiazdy o największych prędkościach krążyły wokół centrum. Kiedy zbudowano model bez uwzględnienia czarnej dziury, gwiazdy w centrum były zbyt powolne w porównaniu z obserwacjami. Kiedy dodali czarną dziurę, otrzymali prędkości, które pasowały do danych. Czarna dziura jest dodatkowym dowodem na to, że obiekt ten jest nieosłoniętym jądrem.

Naukowcy mają nadzieję zaobserwować więcej nieosłoniętych jąder, w których może znajdować się więcej czarnych dziur o masach pośrednich. Są one okazją do dowiedzenia się więcej na temat populacji czarnych dziur w centrach galaktyk o niskiej masie, a także do poznania, jak galaktyki są zbudowane z mniejszych cegiełek.

Opracowanie:
Agnieszka Nowak

Źródło:
University of Utah

Vega

Na ilustracji: Galaktyka Andromedy, w której zaobserwowano B023-G078. Źródło: Iván Éder; HST ACS/HRC.


Załączniki:
Andromeda_Galaxy_David-Deddy-Dayag_WEB.jpg
Andromeda_Galaxy_David-Deddy-Dayag_WEB.jpg [ 354.9 KiB | Przeglądany 3781 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 30 stycznia 2022, 19:47 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
W sercu blazara

Międzynarodowy zespół naukowców zmapował aktywną galaktykę OJ 287 z rozdzielczością kątową 12 mikrosekund łuku w zakresie radiowym.

Jest to obecnie najwyższa rozdzielczość, jaką można osiągnąć w obserwacjach astronomicznych. Stało się to możliwe dzięki technice interferometrii wielkobazowej. Połączono sygnały z 12 radioteleskopów – jeden z nich znajdował się na pokładzie rosyjskiego satelity Spektr-R. Powstały w ten sposób wirtualny teleskop miał średnicę 193 000 kilometrów.

Galaktyka OJ 287 znajduje się 5 miliardów lat świetlnych od Ziemi w kierunku gwiazdozbioru Raka. Należy do tak zwanej klasy blazarówgalaktyk, w których centrum znajduje się supermasywna czarna dziura. Podobno w sercu galaktyki OJ 287 ukryte są nawet dwie czarne dziury. W bezpośrednim towarzystwie tych grawitacyjnych pułapek w dwóch przeciwnych kierunkach powstają tzw. dżety, czyli strumienie gazu. Emitują one promieniowanie o różnym natężeniu.

Interferometryczne obrazy na czterech różnych długościach fali pokazują kilka węzłów emisyjnych w zakrzywionym strumieniu OJ 287. Ponadto, krzywizna strumienia wzrasta wraz ze wzrostem rozdzielczości kątowej i w kierunku pochodzenia dżetu. Potwierdza to hipotezę strumienia „poprzedzającego”, na który wpływ mają dwie supermasywne czarne dziury w centrum galaktyki.

Analiza własności polaryzacyjnych promieniowania radiowego pokazuje również dominujące toroidalne pole magnetyczne. Na tej podstawie naukowcy doszli do wniosku, że przez najbardziej wewnętrzny region emitujący promieniowanie radiowe przemierza silne pole magnetyczne – co zgadza się z modelami formowania się strumienia.

Własności spektralne promieniowania radiowego sugerują, że plazma strumienia składa się z elektronów i pozytonów, których energia kinetyczna jest w przybliżeniu w równowadze z energią pola magnetycznego. Powtarzające się „zastrzyki” bardziej energetycznych cząstek do plazmy strumienia zakłócają tę równowagę i powodują, że niektóre części wewnętrznego dżetu ulegają rozbłyskowi.

Galaktyka OJ 287 jest najlepszym kandydatem w naszym kosmicznym sąsiedztwie na posiadanie dwóch supermasywnych czarnych dziur okrążających siebie nawzajem. Przypuszczalnie, wtórna czarna dziura w tym układzie znajduje się na bardzo ciasnej eliptycznej orbicie i przechodzi przez dysk akrecyjny pierwotnej czarnej dziury dwa razy na dwanaście lat. Powoduje to, między innymi, silne wybuchy promieniowania (flary).

Jednym z najważniejszych pytań związanych z ewolucją supermasywnych czarnych dziur jest to, w jaki sposób para może się ostatecznie połączyć – mówi Andrei Lobanov z Instytutu Radioastronomii Maxa Plancka. Teoria mówi, że gdy dwa masywne potwory całkowicie wyprą gwiazdy i gaz wokół siebie, odległość między czarnymi dziurami powinna przestać się zmniejszać.

W tym momencie do gry wchodzi promieniowanie grawitacyjne, które powoduje, że dwie czarne dziury zbliżają się do siebie coraz bardziej, aż w końcu się łączą – powiedział Lobanov. W przypadku OJ 287, partnerzy w podejrzewanym układzie podwójnym są tak blisko, że powinny emitować fale grawitacyjne, które powinny być wykrywalne w najbliższej przyszłości.

Znaczna część energii uwalnianej przez materię zgromadzoną przez czarne dziury kończy swój żywot w dwubiegunowych i wysoce relatywistycznych strumieniach plazmowych. Zaobserwowana szczegółowa struktura wewnętrznego regionu strumieni idealnie nadaje się do sprawdzenia poprawności modelu podwójnych czarnych dziur – mówi Thomas Krichbaum, naukowiec z Maxa Plancka w Bonn. Ponadto twierdzi on, że dowie się, czy obserwowane zakrzywienie strumieni może być również spowodowane innymi efektami, takimi jak spiralne pola magnetyczne lub rotująca czasoprzestrzeń w pobliżu czarnych dziur.

Wyniki pomogły nam poszerzyć naszą wiedzę na temat morfologii relatywistycznych strumieni w pobliżu centralnego silnika, potwierdzając rolę pól magnetycznych u podstawy dżetów oraz zidentyfikować i zbadać dalsze cechy świadczące o istnieniu podwójnej czarnej dziury głęboko w sercu OJ 287 – mówi Efthalia Traianou, która zrobiła doktorat w Max Planck Institute for Radio Astronomy.

Opracowanie:
Agnieszka Nowak

Źródło:
MPG

Vega

Na ilustracji: Zakrzywiony strumień w galaktyce aktywnej OJ 287 na podstawie obrazów radiowych wykonanych w różnych rozdzielczościach. Źródło: Eduardo Ros/MPIfR (Collage), Gómez i inni. The Astrophysical Journal, 2022 (Bilder).


Załączniki:
original.jpg
original.jpg [ 66.05 KiB | Przeglądany 3772 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 31 stycznia 2022, 19:45 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Czarna dziura zapoczątkowała formowanie się gwiazd w galaktyce karłowatej

Czarne dziury często są opisywane jako potwory Wszechświata – rozdzierają gwiazdy, pożerają wszystko, co znajdzie się zbyt blisko i utrzymują światło w niewoli. Szczegółowe dane z HST ukazują jednak czarną dziurę w nowym świetle: sprzyja ona powstawaniu gwiazd, a nie tłumi je.

Często przedstawiane jako niszczycielskie potwory, które trzymają światło w niewoli, czarne dziury odgrywają mniej nikczemną rolę w najnowszych badaniach przeprowadzonych przez Kosmiczny Teleskop Hubble’a. Czarna dziura znajdująca się w sercu galaktyki karłowatej Henize 2-10 tworzy gwiazdy, zamiast je pochłaniać. Czarna dziura najwyraźniej przyczynia się do powstania nowych gwiazd w galaktyce. Wspominana galaktyka znajduje się w odległości 30 milionów lat świetlnych stąd, w gwiazdozbiorze Kompasu, na niebie południowym.

Dekadę temu ta mała galaktyka wywołała wśród astronomów debatę na temat tego, czy galaktyki karłowate posiadają czarne dziury proporcjonalne do supermasywnych potworów znajdujących się w sercach większych galaktyk. Nowe odkrycie pokazuje, że Henize 2-10, zawierająca zaledwie 1/10 liczby gwiazd występujących w naszej Drodze Mlecznej, może odegrać istotną rolę w rozwiązaniu zagadki, skąd w ogóle wzięły się supermasywne czarne dziury.

Dziesięć lat temu, kiedy jako studentka myślałam, że swoją karierę poświęcę formowaniu się gwiazd, spojrzałam na dane z Henize 2-10 i wszystko się zmieniło – powiedziała Amy Reines, która w 2011 roku opublikowała pierwsze dowody na istnienie czarnej dziury w galaktyce, i jest współautorką pracy opublikowanej 19 stycznia 2022 roku w Nature.

Od początku wiedziałam, że w Henize 2-10 dzieje się coś niezwykłego i wyjątkowego, a teraz Hubble dostarczył bardzo wyraźny obraz połączenia między czarną dziurą a sąsiednim regionem gwiazdotwórczym znajdującym się 230 lat świetlnych od czarnej dziury – powiedziała Reines.

Tym połączeniem jest wypływ gazu rozciągający się w przestrzeni kosmicznej od jasnego gwiezdnego żłobka. Gdy pojawił się wypływ o niskiej prędkości, w regionie tym znajdował się już gęsty kokon gazu. Spektroskopia Hubble’a pokazuje, że wypływ poruszał się z prędkością ponad półtora miliona km/h, uderzając w gęsty gaz i rozgrzewając się. Nowo narodzone gromady gwiazd przecinają ścieżkę rozprzestrzeniania się wypływu, a ich wiek również został obliczony przez Hubble’a.

Jest to efekt odwrotny do tego, co można zaobserwować w większych galaktykach, gdzie materia opadająca w kierunku czarnej dziury jest porywana przez otaczające ją pola magnetyczne, tworząc płonące strumienie plazmy poruszające się z prędkością bliską prędkości światła. Obłoki gazu złapane na drodze tych strumieni zostałyby podgrzane w stopniu znacznie przekraczającym ich zdolność do ochłodzenia się i uformowania gwiazd. Jednak w przypadku mniej masywnej czarnej dziury w Henize 2-10, i jej łagodniejszego wypływu, gaz został sprężony na tyle, by spowodować powstanie nowych gwiazd.

Od czasu pierwszego odkrycia charakterystycznych emisji radiowych i rentgenowskich w Henize 2-10, Reines uważała, że prawdopodobnie pochodzą one od masywnej czarnej dziury, ale nie tak supermasywnej, jak te obserwowane w większych galaktykach. Inni astronomowie uważali jednak, że promieniowanie to jest raczej emitowane przez pozostałości po supernowej, co jest znanym zjawiskiem w galaktyce szybko pompującej masywne gwiazdy, które szybko eksplodują.

Reines spodziewała się, że w przyszłości jeszcze więcej badań zostanie skierowanych na czarne dziury w galaktykach karłowatych, w celu wykorzystania ich jako wskazówki do rozwiązania zagadki, w jaki sposób supermasywne czarne dziury powstały we wczesnym Wszechświecie. Jest to uporczywa zagadka dla astronomów. Związek pomiędzy masą galaktyki a jej czarną dziurą może dostarczyć wskazówek. Czarna dziura w Henize 2-10 ma masę około miliona mas Słońca. W większych galaktykach czarne dziury mogą mieć masę ponad miliard razy większą od słonecznej. Im masywniejsza galaktyka-gospodarz, tym masywniejsza jest centralna czarna dziura.

Obecne teorie na temat pochodzenia supermasywnych czarnych dziur dzielą się na trzy kategorie:

1. powstały tak, jak mniejsze czarne dziury o masie gwiazdowej, w wyniku zapadnięcia się gwiazdy, i w jakiś sposób zgromadziły dużo materiału, aby stać się supermasywnymi;
2. specjalne warunki we wczesnym Wszechświecie pozwoliły na powstanie supermasywnych gwiazd, które zapaliły się, tworząc od razu masywne „nasiona” czarnych dziur, lub
3. nasiona przyszłych supermasywnych czarnych dziur narodziły się w gęstych gromadach gwiazd, gdzie ogólna masa gromady byłaby wystarczająca, aby w jakiś sposób stworzyć je w wyniku kolapsu grawitacyjnego.

Jak dotąd, żadna z tych teorii „zasiewu” czarnych dziur nie wyszła na prowadzenie. Galaktyki karłowate, takie jak Henize 2-10, oferują obiecujące potencjalne wskazówki, ponieważ pozostały one małe w kosmicznym czasie, zamiast ulegać wzrostowi i fuzjom większych galaktyk, takich jak Droga Mleczna. Astronomowie uważają, że czarne dziury w galaktykach karłowatych mogą służyć jako odpowiednik dla czarnych dziur we wczesnym Wszechświecie, kiedy te dopiero zaczynały się formować i rosnąć.

Opracowanie:
Agnieszka Nowak

Źródło:
Hubblesite

Vega

Na ilustracji: Gwiazdotwórcza galaktyka karłowata Henize 2-10. Źródło: SCIENCE: NASA, ESA, Zachary Schutte (XGI), Amy Reines (XGI).


Załączniki:
STScI-01FS23B3F0097TP18P83CDGGVD.png
STScI-01FS23B3F0097TP18P83CDGGVD.png [ 1.14 MiB | Przeglądany 3762 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 03 lutego 2022, 20:31 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Dziwne orbity planet w układzie potrójnym gwiazd

Większość planet okrąża swoje gwiazdy tym samym kierunku, w którym rotują ich gwiazdy. Dlaczego jednak niektóre rzadkie układy planetarne są niewyrównane?

W układzie potrójnym gwiazd K2-290 znajduje się para planet o bardzo zaburzonych orbitach. Planety b i c krążą wokół gwiazdy centralnej układu – K2-290A – po orbitach o nachyleniu 124 st. względem osi obrotu gwiazdy. Nachylenie większe niż 90 st. uważane jest za retrogradację, ponieważ planety poruszają się w kierunku przeciwnym do tego, w którym rotuje gwiazda.

Poprzednie badania wykazały, że nachylenie to zostało wywołane oddziaływaniem pomiędzy gwiazdą A i jej towarzyszem, gwiazdą B, podczas gdy układ planetarny gwiazdy A był wciąż w fazie rozwoju dysku protoplanetarnego. W scenariuszu tym dysk został zaburzony, gdy planety były w rezonansie z gwiazdą B, kiedy to najbliższe lub najdalsze punkty orbitalne ustawiają się w jednej linii. Jednakże, jak stwierdzili autorzy tej wcześniejszej pracy, może być więcej niż jeden sposób na niewłaściwe ustawienie dysku. Artykuł opublikowany 24 stycznia 2022 roku w The Astrophysical Journal Letters bada inną możliwą przyczynę tego niedopasowania, dotyczącą trzeciego prawdopodobnego składnika układu, K2-290C.

Autorzy pracy przeprowadzili symulację oddziaływań pomiędzy pięcioma ciałami w układzie K2-290, aby sprawdzić, jakiego rodzaju warunki początkowe doprowadziły do zaobserwowanego obecnie dziwnego ułożenia. Gdy więcej niż dwa ciała oddziałują grawitacyjnie, dynamiczne układy mogą być dość chaotyczne. Gdy odległa trzecia gwiazda (w tym przypadku C) okrąża bliższy układ podwójny (A i B) pod kątem, może to spowodować, że mimośrodowość i nachylenie orbity wewnętrznej pary będą oscylować w wyniku interakcji trzech ciał. Oscylacje te zapewniają możliwy mechanizm niewspółosiowości orbity planetarnej.

Kiedy gwiazda B jest na bardzo wydłużonej orbicie, powoduje to, że precesja orbitalna planet zmienia swoją częstotliwość, wybijając je z płaszczyzny równikowej gwiazdy A. Z gwiazdą C, która miesza w orbicie gwiazdy B, szeroki wachlarz warunków początkowych może prowadzić do tego silnie niewspółosiowego wyniku końcowego.

Autorzy pracy przetestowali ~50 000 możliwych warunków początkowych dla układu po jego uformowaniu się. Stwierdzili, że w 56% scenariuszy nachylenie orbity w szacowanym przedziale wieku gwiazdy 3,2–5,6 miliarda lat wynosi 124 st. W 17% układ planetarny został zniszczony, a w 27% prób pozostał nienaruszony, ale bez dużego nachylenia. Gdy pominie się wpływ gwiazdy C na układ, tylko 12% symulacji kończy się osiągnięciem obserwowanego nachylenia.

Co więc tak naprawdę wydarzyło się w układzie K2-290? Ostatecznie autorzy pokazują, że wpływ gwiazdy C mógł wywołać obserwowane wsteczne orbity planet wokół K2-290A. Czy to oznacza, że poprzednie odkrycie dotyczące pierwotnej niewspółosiowości w dysku protoplanetarnym K2-290A są błędne? Nie, ale pokazuje, że nie jest to wymóg konieczny do uzyskania tego wyniku, gdy w grę wchodzi trzecia gwiazda.

Niektóre pytania dotyczące tego układu pozostają bez odpowiedzi. Jak na razie wiadomo jedynie, że K2-290A może posiadać tylko dwie planety, ale pomiary prędkości radialnych wskazują, że możliwa jest obecność jeszcze jednej planety o dłuższym okresie orbitalnym, co mogłoby zwiększyć poziom interakcji pomiędzy planetami a gwiazdą B. Lepsze określenie orbit gwiazd B i C mogłoby pomóc jeszcze lepiej przetestować tę dynamiczną teorię.

Co to oznacza dla innych układów planetarnych?
K2-290 był pierwszym układem, który przedstawia mocne dowody na zaburzenie pierwotne dysku, z gwiazdą B znajdującą się w odpowiedniej odległości, aby wywołać teoretyczny efekt. Jednak, biorąc pod uwagę obecność gwiazdy C, te duże nachylenia mogą powstać po fazie dysku protoplanetarnego w wielu różnych warunkach początkowych. Teoria pierwotnej niewspółosiowości opiera się na wysoce niepewnej dynamice gazu i parowaniu, podczas gdy elementy mechanizmu napędzanego trzecim składnikiem przedstawione w artykule są fizycznie dość dobrze poznane. Te dwa mechanizmy mogą współpracować w niektórych układach, ponieważ mechanizm przedstawiony w artykule nie jest silnie zależny od początkowej konfiguracji systemu.

To nachylenie pod kątem 124 st. nie jest szczególnie wyjątkowe; mechanizm ten może napędzać układy aż do 180 st. – orbita idealnie wsteczna. Dodatkowo, w innych układach, planeta wielkości Jowisza w 1/10 odległości od gwiazdy B mogłaby naśladować efekt gwiazdy B, pomagając napędzać niewspółosiowość planet wewnętrznych. To będzie fascynujące zobaczyć, jakie dziwne układy znajdą łowcy egzoplanet w następnej kolejności!

Opracowanie:
Agnieszka Nowak

Źródło:
AAS

Vega

Na ilustracji: Wizja artystyczna planety na orbicie wstecznej. Źródło: ESO/L. Calçada.


Załączniki:
eso1016a.jpg
eso1016a.jpg [ 99.32 KiB | Przeglądany 3666 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Post: 06 lutego 2022, 18:11 
Offline
Administrator
Awatar użytkownika

Rejestracja: 20 maja 2014, 18:29
Posty: 1841
Oddział PTMA: Kraków
Przy umierających gwiazdach również mogą powstawać nowe planety

Gwiazdy zwykle nie są wiele starsze od swoich planet. Na przykład nasze Słońce powstało 4,6 miliarda lat temu, a niedługo po nim pojawiła się Ziemia. Jednak astronomowie odkryli, że możliwy jest również zupełnie inny scenariusz. Niektóre typy gwiazd, nawet jeżeli są bliskie śmierci, mogą nadal tworzyć planety. Jeżeli się to potwierdzi, teorie na temat powstawania planet będą musiały zostać skorygowane.

Planety takie jak nasza Ziemia, oraz wszystkie inne planety Układu Słonecznego, powstały niedługo po Słońcu. Nasze Słońce zaczęło płonąć 4,6 miliarda lat temu, a w ciągu następnych milionów lat materia wokół niego zebrała się w protoplanety. Narodziny planet w dysku protoplanetarnym, gigantycznym naleśniku z pyłu i gazu, ze Słońcem w środku, wyjaśniają, dlaczego wszystkie krążą w tej samej płaszczyźnie.

Jednak takie dyski protoplanetarne nie muszą otaczać jedynie nowo narodzonych gwiazd. Mogą się one rozwijać niezależnie od formowania się gwiazd, na przykład wokół gwiazd podwójnych, z których jedna umiera. Kiedy zbliża się koniec gwiazdy średniej wielkości (takiej jak Słońce), wyrzuca ona zewnętrzną część swojej atmosfery w przestrzeń kosmiczną, po czym powoli umiera jako biały karzeł. Jednak w przypadku gwiazd podwójnych, grawitacyjne przyciąganie drugiej gwiazdy powoduje, że materia wyrzucona przez umierającą gwiazdę tworzy płaski, wirujący dysk. Co więcej, dysk ten jest bardzo podobny do dysków protoplanetarnych, które astronomowie obserwują wokół młodych gwiazd w innych miejscach w Drodze Mlecznej.

To już wiedzieliśmy. Nowością jest jednak to, że dyski otaczające tak zwane wyewoluowane gwiazdy podwójne nierzadko wykazują oznaki, które mogą wskazywać na formowanie się planet, co zostało odkryte przez zespół astronomów. Co więcej, ich obserwacje pokazują, że dzieje się tak w przypadku 1/10 takich gwiazd podwójnych. W 10% badanych przez nas wyewoluowanych gwiazd podwójnych z dyskami, widzimy dużą wnękę w dysku – mówi astronom z KU Leuven Jacques Kluska, pierwszy autor artykułu w czasopiśmie Astronomy & Astrophysics, w którym opisano odkrycie. Jest to wskazówka, że unosi się tam coś, co zebrało całą materię w obszarze wnęki.

Planety drugiej generacji
Oczyszczanie wnęki z materii może być dziełem planety. Planeta ta mogła uformować się nie na początku życia jednej z gwiazd podwójnych, ale na samym jego końcu. Astronomowie znaleźli kolejne mocne przesłanki wskazujące na obecność takich planet. W wyewoluowanych gwiazdach podwójnych z dużą wnęką w dysku zaobserwowaliśmy, że ciężkie pierwiastki, takie jak żelazo, były bardzo rzadkie na powierzchni umierającej gwiazdy – mówi Kluska.

Przy okazji, Kluska nie wyklucza, że w ten sposób wokół tych gwiazd podwójnych może uformować się kilka planet.

Odkrycia dokonano, gdy astronomowie sporządzili spis wyewoluowanych gwiazd podwójnych w Drodze Mlecznej. Dokonali tego na podstawie istniejących, publicznie dostępnych obserwacji. Kluska i jego współpracownicy naliczyli 85 par takich gwiazd podwójnych. W dziesięciu parach natrafili na dyski z dużymi wnękami, na zdjęciach uzyskanych w podczerwieni.

Aktualne teorie wystawione na próbę
Jeżeli nowe obserwacje potwierdzą istnienie planet wokół wyewoluowanych gwiazd podwójnych, i jeżeli okaże się, że planety powstały dopiero po tym, jak jedna z gwiazd osiągnęła kres swojego życia, teorie dotyczące powstawania planet będą musiały zostać skorygowane. Potwierdzenie lub obalenie tego niezwykłego sposobu powstawania planet będzie bezprecedensowym testem dla obecnych teorii – twierdzi profesor Hans Van Winckel, szef Instytutu Astronomii KU Leuven.

Astronomowie z KU Leuven chcą sami wkrótce zweryfikować swoją hipotezę. W tym celu użyją teleskopów ESO w Chile, aby przyjrzeć się bliżej dziesięciu parom gwiazd podwójnych, których dyski wykazują dużą wnękę.

Opracowanie:
Agnieszka Nowak

Źródło:
KU Leuven

Vega

Na ilustracji: Populacja dysków przejściowych wokół wyewoluowanych gwiazd. Źródło: N. Stecki


Załączniki:
large.png
large.png [ 632.12 KiB | Przeglądany 3608 razy ]

_________________
Pozdrawiam,
Agnieszka Nowak
Prezes O/Kraków PTMA, krakow[at]ptma.pl, agnieszka.nowak[at]ptma.pl PTMA Kraków, Facebook
Vega
Urania
Astronarium
Sky Watcher 127/1500, EOS 7D, Canon 15-85, Canon 75-300, Canon 50/1.8, Samyang Fish Eye 8mm
Na górę
 Wyświetl profil  
 
Wyświetl posty nie starsze niż:  Sortuj wg  
Nowy temat Odpowiedz w temacie  [ Posty: 1308 ]  Przejdź na stronę Poprzednia  1 ... 49, 50, 51, 52, 53, 54, 55 ... 66  Następna

Czas środkowoeuropejski letni


Kto jest online

Użytkownicy przeglądający to forum: Obecnie na forum nie ma żadnego zarejestrowanego użytkownika i 4 gości


Nie możesz tworzyć nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz dodawać załączników

Szukaj:
Przejdź do:  
Technologię dostarcza phpBB® Forum Software © phpBB Group